K11a183

From Knot Atlas
Revision as of 12:00, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11a182.gif

K11a182

K11a184.gif

K11a184

K11a183.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a183 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X12,3,13,4 X14,6,15,5 X16,7,17,8 X18,9,19,10 X20,11,21,12 X2,13,3,14 X22,16,1,15 X10,17,11,18 X8,19,9,20 X6,21,7,22
Gauss code 1, -7, 2, -1, 3, -11, 4, -10, 5, -9, 6, -2, 7, -3, 8, -4, 9, -5, 10, -6, 11, -8
Dowker-Thistlethwaite code 4 12 14 16 18 20 2 22 10 8 6
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a183 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 2

[edit Notes for K11a183's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 115, -2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a183/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a183/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_121, K11a41, K11a198, K11a331,}

Same Jones Polynomial (up to mirroring, ): {K11a41,}

Vassiliev invariants

V2 and V3: (1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of K11a183. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-10123χ
5           1-1
3          3 3
1         51 -4
-1        83  5
-3       96   -3
-5      107    3
-7     89     1
-9    710      -3
-11   48       4
-13  27        -5
-15 14         3
-17 2          -2
-191           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a182.gif

K11a182

K11a184.gif

K11a184