K11a80

From Knot Atlas
Jump to navigationJump to search

K11a79.gif

K11a79

K11a81.gif

K11a81

K11a80.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a80 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,3,11,4 X12,6,13,5 X14,7,15,8 X22,10,1,9 X2,11,3,12 X18,14,19,13 X20,15,21,16 X6,17,7,18 X8,20,9,19 X16,21,17,22
Gauss code 1, -6, 2, -1, 3, -9, 4, -10, 5, -2, 6, -3, 7, -4, 8, -11, 9, -7, 10, -8, 11, -5
Dowker-Thistlethwaite code 4 10 12 14 22 2 18 20 6 8 16
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a80 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a80's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 137, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {K11a270,}

Vassiliev invariants

V2 and V3: (-2, 1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a80. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-6-5-4-3-2-1012345χ
11           1-1
9          3 3
7         51 -4
5        93  6
3       105   -5
1      129    3
-1     1111     0
-3    811      -3
-5   611       5
-7  38        -5
-9 16         5
-11 3          -3
-131           1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a79.gif

K11a79

K11a81.gif

K11a81