K11a80
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X12,6,13,5 X14,7,15,8 X22,10,1,9 X2,11,3,12 X18,14,19,13 X20,15,21,16 X6,17,7,18 X8,20,9,19 X16,21,17,22 |
| Gauss code | 1, -6, 2, -1, 3, -9, 4, -10, 5, -2, 6, -3, 7, -4, 8, -11, 9, -7, 10, -8, 11, -5 |
| Dowker-Thistlethwaite code | 4 10 12 14 22 2 18 20 6 8 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-6 t^3+16 t^2-28 t+35-28 t^{-1} +16 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+2 z^6-2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 137, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^5+4 q^4-8 q^3+14 q^2-19 q+22-22 q^{-1} +19 q^{-2} -14 q^{-3} +9 q^{-4} -4 q^{-5} + q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +5 z^6+a^4 z^4-7 a^2 z^4-3 z^4 a^{-2} +9 z^4+2 a^4 z^2-7 a^2 z^2-2 z^2 a^{-2} +5 z^2+a^4-a^2+ a^{-2} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 2 a^2 z^{10}+2 z^{10}+6 a^3 z^9+12 a z^9+6 z^9 a^{-1} +7 a^4 z^8+12 a^2 z^8+8 z^8 a^{-2} +13 z^8+4 a^5 z^7-7 a^3 z^7-19 a z^7-z^7 a^{-1} +7 z^7 a^{-3} +a^6 z^6-16 a^4 z^6-38 a^2 z^6-9 z^6 a^{-2} +4 z^6 a^{-4} -34 z^6-9 a^5 z^5-7 a^3 z^5+a z^5-12 z^5 a^{-1} -10 z^5 a^{-3} +z^5 a^{-5} -2 a^6 z^4+10 a^4 z^4+33 a^2 z^4-6 z^4 a^{-4} +27 z^4+5 a^5 z^3+8 a^3 z^3+11 a z^3+13 z^3 a^{-1} +4 z^3 a^{-3} -z^3 a^{-5} +a^6 z^2-4 a^4 z^2-11 a^2 z^2+3 z^2 a^{-2} +2 z^2 a^{-4} -5 z^2-a^5 z-2 a^3 z-4 a z-4 z a^{-1} -z a^{-3} +a^4+a^2- a^{-2} }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{18}-q^{16}+2 q^{12}-3 q^{10}+4 q^8-q^6-q^4+2 q^2-5+4 q^{-2} -3 q^{-4} +2 q^{-6} +3 q^{-8} -2 q^{-10} +2 q^{-12} - q^{-14} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{94}-3 q^{92}+8 q^{90}-16 q^{88}+22 q^{86}-24 q^{84}+12 q^{82}+20 q^{80}-66 q^{78}+122 q^{76}-163 q^{74}+153 q^{72}-74 q^{70}-81 q^{68}+278 q^{66}-435 q^{64}+489 q^{62}-371 q^{60}+80 q^{58}+297 q^{56}-636 q^{54}+791 q^{52}-674 q^{50}+309 q^{48}+174 q^{46}-588 q^{44}+763 q^{42}-624 q^{40}+243 q^{38}+218 q^{36}-548 q^{34}+593 q^{32}-336 q^{30}-117 q^{28}+568 q^{26}-804 q^{24}+717 q^{22}-313 q^{20}-267 q^{18}+803 q^{16}-1097 q^{14}+1025 q^{12}-605 q^{10}-21 q^8+624 q^6-994 q^4+998 q^2-656+120 q^{-2} +386 q^{-4} -666 q^{-6} +614 q^{-8} -284 q^{-10} -153 q^{-12} +499 q^{-14} -586 q^{-16} +384 q^{-18} +11 q^{-20} -425 q^{-22} +690 q^{-24} -694 q^{-26} +460 q^{-28} -82 q^{-30} -296 q^{-32} +542 q^{-34} -600 q^{-36} +486 q^{-38} -256 q^{-40} +10 q^{-42} +184 q^{-44} -289 q^{-46} +294 q^{-48} -230 q^{-50} +132 q^{-52} -31 q^{-54} -46 q^{-56} +86 q^{-58} -95 q^{-60} +77 q^{-62} -46 q^{-64} +20 q^{-66} +3 q^{-68} -14 q^{-70} +15 q^{-72} -13 q^{-74} +7 q^{-76} -3 q^{-78} + q^{-80} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a80"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-6 t^3+16 t^2-28 t+35-28 t^{-1} +16 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+2 z^6-2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 137, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^5+4 q^4-8 q^3+14 q^2-19 q+22-22 q^{-1} +19 q^{-2} -14 q^{-3} +9 q^{-4} -4 q^{-5} + q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +5 z^6+a^4 z^4-7 a^2 z^4-3 z^4 a^{-2} +9 z^4+2 a^4 z^2-7 a^2 z^2-2 z^2 a^{-2} +5 z^2+a^4-a^2+ a^{-2} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 2 a^2 z^{10}+2 z^{10}+6 a^3 z^9+12 a z^9+6 z^9 a^{-1} +7 a^4 z^8+12 a^2 z^8+8 z^8 a^{-2} +13 z^8+4 a^5 z^7-7 a^3 z^7-19 a z^7-z^7 a^{-1} +7 z^7 a^{-3} +a^6 z^6-16 a^4 z^6-38 a^2 z^6-9 z^6 a^{-2} +4 z^6 a^{-4} -34 z^6-9 a^5 z^5-7 a^3 z^5+a z^5-12 z^5 a^{-1} -10 z^5 a^{-3} +z^5 a^{-5} -2 a^6 z^4+10 a^4 z^4+33 a^2 z^4-6 z^4 a^{-4} +27 z^4+5 a^5 z^3+8 a^3 z^3+11 a z^3+13 z^3 a^{-1} +4 z^3 a^{-3} -z^3 a^{-5} +a^6 z^2-4 a^4 z^2-11 a^2 z^2+3 z^2 a^{-2} +2 z^2 a^{-4} -5 z^2-a^5 z-2 a^3 z-4 a z-4 z a^{-1} -z a^{-3} +a^4+a^2- a^{-2} }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a270,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a80"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-6 t^3+16 t^2-28 t+35-28 t^{-1} +16 t^{-2} -6 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ -q^5+4 q^4-8 q^3+14 q^2-19 q+22-22 q^{-1} +19 q^{-2} -14 q^{-3} +9 q^{-4} -4 q^{-5} + q^{-6} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a270,} |
Vassiliev invariants
| V2 and V3: | (-2, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a80. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



