K11n143

From Knot Atlas
Revision as of 12:05, 30 August 2005 by ScottKnotPageRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

K11n142.gif

K11n142

K11n144.gif

K11n144

K11n143.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n143 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X12,4,13,3 X5,16,6,17 X22,8,1,7 X9,18,10,19 X2,12,3,11 X13,21,14,20 X15,10,16,11 X17,6,18,7 X19,15,20,14 X8,22,9,21
Gauss code 1, -6, 2, -1, -3, 9, 4, -11, -5, 8, 6, -2, -7, 10, -8, 3, -9, 5, -10, 7, 11, -4
Dowker-Thistlethwaite code 4 12 -16 22 -18 2 -20 -10 -6 -14 8
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n143 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11n143's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 9, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11n143/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n143/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-2, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11n143. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-4-3-2-10123456χ
13          11
11         1 -1
9        11 0
7      121  0
5      11   0
3    122    1
1   121     0
-1   12      1
-3 111       -1
-5           0
-71          1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n142.gif

K11n142

K11n144.gif

K11n144