9 18
|
|
(KnotPlot image) |
See the full Rolfsen Knot Table. Visit 9 18's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
Knot presentations
Planar diagram presentation | X1425 X3,12,4,13 X5,14,6,15 X9,18,10,1 X17,6,18,7 X7,16,8,17 X15,8,16,9 X13,10,14,11 X11,2,12,3 |
Gauss code | -1, 9, -2, 1, -3, 5, -6, 7, -4, 8, -9, 2, -8, 3, -7, 6, -5, 4 |
Dowker-Thistlethwaite code | 4 12 14 16 18 2 10 8 6 |
Conway Notation | [3222] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | ||||
Length is 11, width is 4, Braid index is 4 |
[{11, 5}, {1, 9}, {8, 10}, {9, 11}, {10, 6}, {5, 7}, {4, 8}, {6, 3}, {2, 4}, {3, 1}, {7, 2}] |
[edit Notes on presentations of 9 18]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 18"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X1425 X3,12,4,13 X5,14,6,15 X9,18,10,1 X17,6,18,7 X7,16,8,17 X15,8,16,9 X13,10,14,11 X11,2,12,3 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
-1, 9, -2, 1, -3, 5, -6, 7, -4, 8, -9, 2, -8, 3, -7, 6, -5, 4 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 12 14 16 18 2 10 8 6 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3222] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 4, 11, 4 } |
In[11]:=
|
Show[BraidPlot[br]]
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{11, 5}, {1, 9}, {8, 10}, {9, 11}, {10, 6}, {5, 7}, {4, 8}, {6, 3}, {2, 4}, {3, 1}, {7, 2}] |
In[14]:=
|
Draw[ap]
|
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
A1 Invariants.
Weight | Invariant |
---|---|
1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{23}+q^{21}-2 q^{19}+2 q^{17}-q^{15}+q^{11}-q^9+3 q^7-q^5+q^3} |
2 | |
3 | |
4 | |
5 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{34}-2 q^{28}+q^{26}+q^{20}-q^{18}+2 q^{16}+q^{12}+2 q^{10}-q^8+q^6} |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{45}-q^{41}-2 q^{37}+q^{35}-q^{33}+q^{31}+q^{27}+2 q^{21}+2 q^{17}+2 q^{13}-q^{11}+q^9} |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | |
1,0,0,0 |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{120}-q^{116}-q^{114}+2 q^{112}+3 q^{110}-q^{108}-5 q^{106}-2 q^{104}+6 q^{102}+6 q^{100}-4 q^{98}-9 q^{96}-q^{94}+9 q^{92}+5 q^{90}-7 q^{88}-8 q^{86}+2 q^{84}+7 q^{82}-7 q^{78}-2 q^{76}+5 q^{74}+2 q^{72}-6 q^{70}-4 q^{68}+4 q^{66}+5 q^{64}-3 q^{62}-6 q^{60}+2 q^{58}+7 q^{56}+q^{54}-8 q^{52}-3 q^{50}+8 q^{48}+8 q^{46}-4 q^{44}-8 q^{42}+9 q^{38}+5 q^{36}-3 q^{34}-5 q^{32}+q^{30}+4 q^{28}+2 q^{26}-q^{24}-q^{22}+q^{18}} |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{102}-q^{100}+2 q^{98}-2 q^{96}+4 q^{94}-5 q^{92}+5 q^{90}-6 q^{88}+7 q^{86}-7 q^{84}+5 q^{82}-5 q^{80}+4 q^{78}-3 q^{76}-3 q^{74}+2 q^{72}-5 q^{70}+7 q^{68}-12 q^{66}+10 q^{64}-12 q^{62}+13 q^{60}-13 q^{58}+9 q^{56}-10 q^{54}+9 q^{52}-4 q^{50}+3 q^{48}-q^{46}+7 q^{42}-4 q^{40}+6 q^{38}-6 q^{36}+9 q^{34}-4 q^{32}+6 q^{30}-4 q^{28}+5 q^{26}-q^{24}+2 q^{22}-q^{20}+q^{18}} |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{176}-q^{174}+3 q^{172}-4 q^{170}+3 q^{168}-2 q^{166}-2 q^{164}+10 q^{162}-15 q^{160}+18 q^{158}-15 q^{156}+5 q^{154}+9 q^{152}-26 q^{150}+36 q^{148}-37 q^{146}+23 q^{144}-2 q^{142}-24 q^{140}+37 q^{138}-38 q^{136}+27 q^{134}-6 q^{132}-16 q^{130}+24 q^{128}-23 q^{126}+5 q^{124}+16 q^{122}-29 q^{120}+31 q^{118}-16 q^{116}-7 q^{114}+34 q^{112}-51 q^{110}+54 q^{108}-40 q^{106}+9 q^{104}+23 q^{102}-48 q^{100}+58 q^{98}-47 q^{96}+23 q^{94}+4 q^{92}-26 q^{90}+32 q^{88}-25 q^{86}+4 q^{84}+16 q^{82}-23 q^{80}+20 q^{78}-2 q^{76}-18 q^{74}+35 q^{72}-36 q^{70}+29 q^{68}-12 q^{66}-11 q^{64}+29 q^{62}-34 q^{60}+33 q^{58}-18 q^{56}+6 q^{54}+6 q^{52}-14 q^{50}+16 q^{48}-13 q^{46}+9 q^{44}-2 q^{42}-q^{40}+3 q^{38}-3 q^{36}+3 q^{34}-q^{32}+q^{30}} |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["9 18"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 41, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a246,}
Same Jones Polynomial (up to mirroring, ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["9 18"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 t^2-10 t+13-10 t^{-1} +4 t^{-2} } , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a246,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (6, -15) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 18. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
2 | |
3 | |
4 | |
5 | |
6 | |
7 |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|