8 19
|
|
![]() (KnotPlot image) |
See the full Rolfsen Knot Table. Visit 8 19's page at the Knot Server (KnotPlot driven, includes 3D interactive images!) |
8 19 is the first non-obvious torus knot in the table - it is in fact T(4,3). It is also the pretzel knot P(3,3,-2). |
8_19 is the first non-homologically thin knot in the Rolfsen table. (That is, it's the first knot whose Khovanov homology has 'off-diagonal' elements.)
|
Knot presentations
Planar diagram presentation | X4251 X8493 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,1,12,16 X15,11,16,10 X2837 |
Gauss code | 1, -8, 2, -1, -4, 5, 8, -2, -3, 7, -6, 4, -5, 3, -7, 6 |
Dowker-Thistlethwaite code | 4 8 -12 2 -14 -16 -6 -10 |
Conway Notation | [3,3,2-] |
Minimum Braid Representative | A Morse Link Presentation | An Arc Presentation | |||
Length is 8, width is 3, Braid index is 3 |
![]() |
![]() [{4, 10}, {3, 5}, {1, 4}, {6, 9}, {5, 8}, {2, 6}, {10, 3}, {9, 7}, {8, 2}, {7, 1}] |
[edit Notes on presentations of 8 19]
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 19"];
|
In[4]:=
|
PD[K]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
X4251 X8493 X9,15,10,14 X5,13,6,12 X13,7,14,6 X11,1,12,16 X15,11,16,10 X2837 |
In[5]:=
|
GaussCode[K]
|
Out[5]=
|
1, -8, 2, -1, -4, 5, 8, -2, -3, 7, -6, 4, -5, 3, -7, 6 |
In[6]:=
|
DTCode[K]
|
Out[6]=
|
4 8 -12 2 -14 -16 -6 -10 |
(The path below may be different on your system)
In[7]:=
|
AppendTo[$Path, "C:/bin/LinKnot/"];
|
In[8]:=
|
ConwayNotation[K]
|
Out[8]=
|
[3,3,2-] |
In[9]:=
|
br = BR[K]
|
KnotTheory::credits: The minimum braids representing the knots with up to 10 crossings were provided by Thomas Gittings. See arXiv:math.GT/0401051.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \textrm{BR}(3,\{1,1,1,2,1,1,1,2\})} |
In[10]:=
|
{First[br], Crossings[br], BraidIndex[K]}
|
KnotTheory::credits: The braid index data known to KnotTheory` is taken from Charles Livingston's http://www.indiana.edu/~knotinfo/.
|
KnotTheory::loading: Loading precomputed data in IndianaData`.
|
Out[10]=
|
{ 3, 8, 3 } |
In[11]:=
|
Show[BraidPlot[br]]
|
|
Out[11]=
|
-Graphics- |
In[12]:=
|
Show[DrawMorseLink[K]]
|
KnotTheory::credits: "MorseLink was added to KnotTheory` by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
KnotTheory::credits: "DrawMorseLink was written by Siddarth Sankaran at the University of Toronto in the summer of 2005."
|
![]() |
Out[12]=
|
-Graphics- |
In[13]:=
|
ap = ArcPresentation[K]
|
Out[13]=
|
ArcPresentation[{4, 10}, {3, 5}, {1, 4}, {6, 9}, {5, 8}, {2, 6}, {10, 3}, {9, 7}, {8, 2}, {7, 1}] |
In[14]:=
|
Draw[ap]
|
![]() |
Out[14]=
|
-Graphics- |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-t^2+1- t^{-2} + t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+5 z^4+5 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 3, 6 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+q^5+q^3} |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-6} +6 z^4 a^{-6} -z^4 a^{-8} +10 z^2 a^{-6} -5 z^2 a^{-8} +5 a^{-6} -5 a^{-8} + a^{-10} } |
Kauffman polynomial (db, data sources) | |
The A2 invariant | |
The G2 invariant |
A1 Invariants.
Weight | Invariant |
---|---|
1 | |
2 | |
3 | |
4 | |
5 | |
6 |
A2 Invariants.
Weight | Invariant |
---|---|
1,0 | |
1,1 | |
2,0 |
A3 Invariants.
Weight | Invariant |
---|---|
0,1,0 | |
1,0,0 | |
1,0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} +2 q^{-32} +5 q^{-34} +9 q^{-36} +14 q^{-38} +17 q^{-40} +19 q^{-42} +16 q^{-44} +9 q^{-46} -10 q^{-50} -19 q^{-52} -25 q^{-54} -27 q^{-56} -23 q^{-58} -16 q^{-60} -7 q^{-62} +3 q^{-64} +9 q^{-66} +15 q^{-68} +15 q^{-70} +11 q^{-72} +7 q^{-74} +2 q^{-76} -2 q^{-78} -4 q^{-80} -3 q^{-82} -3 q^{-84} - q^{-86} - q^{-88} +2 q^{-96} } |
A4 Invariants.
Weight | Invariant |
---|---|
0,1,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} + q^{-32} +3 q^{-34} +5 q^{-36} +8 q^{-38} +9 q^{-40} +12 q^{-42} +10 q^{-44} +8 q^{-46} +2 q^{-48} -4 q^{-50} -11 q^{-52} -15 q^{-54} -17 q^{-56} -15 q^{-58} -10 q^{-60} -5 q^{-62} +2 q^{-64} +5 q^{-66} +8 q^{-68} +7 q^{-70} +6 q^{-72} +3 q^{-74} + q^{-76} - q^{-78} - q^{-80} - q^{-82} - q^{-84} } |
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} + q^{-22} +2 q^{-24} +3 q^{-26} +4 q^{-28} +3 q^{-30} +3 q^{-32} + q^{-34} - q^{-36} -3 q^{-38} -4 q^{-40} -4 q^{-42} -3 q^{-44} - q^{-46} + q^{-50} + q^{-52} + q^{-54} } |
B2 Invariants.
Weight | Invariant |
---|---|
0,1 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-20} + q^{-22} + q^{-24} +2 q^{-26} +2 q^{-28} + q^{-30} + q^{-32} + q^{-34} - q^{-40} - q^{-42} - q^{-44} - q^{-46} - q^{-48} - q^{-50} } |
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} + q^{-34} + q^{-36} +2 q^{-38} + q^{-40} +3 q^{-42} +2 q^{-44} +3 q^{-46} +2 q^{-48} +2 q^{-50} + q^{-52} + q^{-54} - q^{-56} - q^{-58} -2 q^{-60} -3 q^{-62} -3 q^{-64} -3 q^{-66} -3 q^{-68} -3 q^{-70} - q^{-72} - q^{-74} +2 q^{-80} + q^{-82} + q^{-84} + q^{-86} + q^{-88} } |
D4 Invariants.
Weight | Invariant |
---|---|
1,0,0,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-30} + q^{-32} +2 q^{-34} +4 q^{-36} +5 q^{-38} +6 q^{-40} +7 q^{-42} +6 q^{-44} +4 q^{-46} +2 q^{-48} -2 q^{-50} -5 q^{-52} -7 q^{-54} -8 q^{-56} -8 q^{-58} -6 q^{-60} -4 q^{-62} - q^{-64} + q^{-66} +2 q^{-68} +3 q^{-70} +2 q^{-72} +2 q^{-74} + q^{-76} } |
G2 Invariants.
Weight | Invariant |
---|---|
1,0 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{-50} + q^{-52} + q^{-54} + q^{-56} + q^{-58} + q^{-60} +2 q^{-62} +2 q^{-64} + q^{-66} + q^{-68} +2 q^{-70} +2 q^{-72} +2 q^{-74} + q^{-76} + q^{-80} +2 q^{-82} - q^{-94} -2 q^{-96} - q^{-98} - q^{-100} -2 q^{-102} -2 q^{-104} -2 q^{-106} - q^{-108} - q^{-110} -2 q^{-112} -2 q^{-114} - q^{-116} - q^{-122} - q^{-124} + q^{-126} + q^{-128} + q^{-136} + q^{-138} + q^{-144} } |
.
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["8 19"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-t^2+1- t^{-2} + t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6+5 z^4+5 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 3, 6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+q^5+q^3} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^6 a^{-6} +6 z^4 a^{-6} -z^4 a^{-8} +10 z^2 a^{-6} -5 z^2 a^{-8} +5 a^{-6} -5 a^{-8} + a^{-10} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["8 19"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^3-t^2+1- t^{-2} + t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^8+q^5+q^3} } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (5, 10) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). The squares with yellow highlighting are those on the "critical diagonals", where Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s+1} or Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j-2r=s-1} , where 6 is the signature of 8 19. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
The Coloured Jones Polynomials
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle n} | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle J_n} |
2 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{23}-q^{22}+q^{20}-q^{19}-q^{16}-q^{13}+q^{12}+q^9+q^6} |
3 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{43}+q^{41}+q^{40}-q^{39}+q^{37}-q^{35}+q^{33}-q^{31}+q^{29}-q^{27}-q^{26}+q^{25}-q^{23}-q^{22}+q^{21}-q^{19}+q^{17}+q^{13}+q^9} |
4 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{70}-q^{69}+q^{65}-2 q^{64}+q^{60}-q^{59}+q^{57}+q^{55}-q^{54}+q^{52}-q^{49}+q^{47}-q^{44}+q^{42}-q^{39}+q^{37}-q^{35}-q^{34}+q^{32}-q^{30}-q^{29}+q^{27}-q^{25}+q^{22}+q^{17}+q^{12}} |
5 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{102}+q^{100}+q^{99}-q^{96}-q^{95}+q^{94}+q^{93}-q^{90}-q^{89}+q^{88}+q^{87}-q^{85}-q^{84}-q^{83}+q^{82}+q^{81}-q^{79}-q^{78}+q^{76}+q^{75}+q^{74}-q^{73}-q^{72}+q^{70}+q^{69}+q^{68}-q^{67}-q^{66}+q^{63}+q^{62}-q^{61}-q^{60}+q^{57}+q^{56}-q^{55}-q^{54}+q^{51}+q^{50}-q^{49}-q^{48}+q^{45}-q^{43}-q^{42}+q^{39}-q^{37}-q^{36}+q^{33}-q^{31}+q^{27}+q^{21}+q^{15}} |
6 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{141}-q^{140}-q^{135}+q^{134}-q^{133}+q^{130}+q^{127}-q^{126}+q^{123}-q^{121}+q^{120}-q^{119}+q^{116}-q^{114}+q^{113}-q^{112}+q^{109}-q^{107}-q^{105}+q^{102}-q^{100}-q^{98}+2 q^{95}-q^{93}+2 q^{88}-q^{86}+2 q^{81}-q^{79}-q^{78}+2 q^{74}-q^{72}-q^{71}+2 q^{67}-q^{65}-q^{64}+2 q^{60}-q^{58}-q^{57}+q^{53}-q^{51}-q^{50}+q^{46}-q^{44}-q^{43}+q^{39}-q^{37}+q^{32}+q^{25}+q^{18}} |
7 | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q^{185}+q^{183}+q^{182}-q^{178}-q^{177}+q^{175}+q^{174}-q^{170}-q^{169}-q^{168}+q^{167}+q^{166}-q^{162}-q^{161}+q^{159}+q^{158}+q^{157}-q^{154}-q^{153}+q^{151}+q^{150}+q^{149}-q^{147}-q^{146}-q^{145}+q^{143}+q^{142}+q^{141}-q^{139}-q^{138}-q^{137}+q^{135}+q^{134}+q^{133}-q^{131}-q^{130}-q^{129}+q^{126}+q^{125}-q^{123}-q^{122}-q^{121}+q^{118}+q^{117}-q^{115}-q^{114}+q^{110}+q^{109}+q^{108}-q^{107}-q^{106}+q^{102}+q^{101}+q^{100}-q^{99}-q^{98}+q^{94}+q^{93}-q^{91}-q^{90}+q^{86}+q^{85}-q^{83}-q^{82}+q^{78}+q^{77}-q^{75}-q^{74}+q^{70}+q^{69}-q^{67}-q^{66}+q^{61}-q^{59}-q^{58}+q^{53}-q^{51}-q^{50}+q^{45}-q^{43}+q^{37}+q^{29}+q^{21}} |
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session, or any of the Computer Talk sections above.
Modifying This Page
Read me first: Modifying Knot Pages
See/edit the Rolfsen Knot Page master template (intermediate). See/edit the Rolfsen_Splice_Base (expert). Back to the top. |
|