K11a281

From Knot Atlas
Revision as of 16:12, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a280.gif

K11a280

K11a282.gif

K11a282

K11a281.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a281 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,3,11,4 X16,6,17,5 X12,8,13,7 X20,10,21,9 X2,11,3,12 X18,13,19,14 X4,16,5,15 X22,17,1,18 X8,20,9,19 X14,21,15,22
Gauss code 1, -6, 2, -8, 3, -1, 4, -10, 5, -2, 6, -4, 7, -11, 8, -3, 9, -7, 10, -5, 11, -9
Dowker-Thistlethwaite code 6 10 16 12 20 2 18 4 22 8 14
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a281 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a281/ThurstonBennequinNumber
Hyperbolic Volume 18.3111
A-Polynomial See Data:K11a281/A-polynomial

[edit Notes for K11a281's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -2

[edit Notes for K11a281's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 155, 2 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:K11a281/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a19, K11a25,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (-1, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11a281. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
15           11
13          3 -3
11         71 6
9        103  -7
7       127   5
5      1310    -3
3     1212     0
1    1014      4
-1   611       -5
-3  310        7
-5 16         -5
-7 3          3
-91           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a280.gif

K11a280

K11a282.gif

K11a282