K11a41

From Knot Atlas
Revision as of 16:15, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a40.gif

K11a40

K11a42.gif

K11a42

K11a41.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a41 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8493 X14,5,15,6 X2837 X18,10,19,9 X20,12,21,11 X16,13,17,14 X6,15,7,16 X22,18,1,17 X12,20,13,19 X10,22,11,21
Gauss code 1, -4, 2, -1, 3, -8, 4, -2, 5, -11, 6, -10, 7, -3, 8, -7, 9, -5, 10, -6, 11, -9
Dowker-Thistlethwaite code 4 8 14 2 18 20 16 6 22 12 10
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a41 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11a41's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^3-11 t^2+27 t-35+27 t^{-1} -11 t^{-2} +2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^6+z^4+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 115, 2 }
Jones polynomial [math]\displaystyle{ q^9-3 q^8+6 q^7-11 q^6+15 q^5-18 q^4+19 q^3-16 q^2+13 q-8+4 q^{-1} - q^{-2} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-2} +z^6 a^{-4} +2 z^4 a^{-2} +2 z^4 a^{-4} -2 z^4 a^{-6} -z^4+2 z^2 a^{-2} +3 z^2 a^{-4} -4 z^2 a^{-6} +z^2 a^{-8} -z^2+ a^{-2} +2 a^{-4} -3 a^{-6} + a^{-8} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-4} +z^{10} a^{-6} +4 z^9 a^{-3} +7 z^9 a^{-5} +3 z^9 a^{-7} +7 z^8 a^{-2} +12 z^8 a^{-4} +9 z^8 a^{-6} +4 z^8 a^{-8} +7 z^7 a^{-1} +4 z^7 a^{-3} -6 z^7 a^{-5} +3 z^7 a^{-9} -8 z^6 a^{-2} -29 z^6 a^{-4} -27 z^6 a^{-6} -9 z^6 a^{-8} +z^6 a^{-10} +4 z^6+a z^5-11 z^5 a^{-1} -18 z^5 a^{-3} -12 z^5 a^{-5} -15 z^5 a^{-7} -9 z^5 a^{-9} +26 z^4 a^{-4} +28 z^4 a^{-6} +5 z^4 a^{-8} -3 z^4 a^{-10} -6 z^4-a z^3+4 z^3 a^{-1} +14 z^3 a^{-3} +20 z^3 a^{-5} +19 z^3 a^{-7} +8 z^3 a^{-9} +z^2 a^{-2} -10 z^2 a^{-4} -13 z^2 a^{-6} -2 z^2 a^{-8} +2 z^2 a^{-10} +2 z^2-z a^{-1} -3 z a^{-3} -7 z a^{-5} -8 z a^{-7} -3 z a^{-9} - a^{-2} +2 a^{-4} +3 a^{-6} + a^{-8} }[/math]
The A2 invariant Data:K11a41/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a41/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_121, K11a183, K11a198, K11a331,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a183,}

Vassiliev invariants

V2 and V3: (1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ -\frac{82}{3} }[/math] [math]\displaystyle{ -\frac{14}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -96 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\frac{328}{3} }[/math] [math]\displaystyle{ -\frac{56}{3} }[/math] [math]\displaystyle{ -\frac{7649}{30} }[/math] [math]\displaystyle{ -\frac{714}{5} }[/math] [math]\displaystyle{ \frac{8222}{45} }[/math] [math]\displaystyle{ -\frac{223}{18} }[/math] [math]\displaystyle{ \frac{991}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a41. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345678χ
19           11
17          2 -2
15         41 3
13        72  -5
11       84   4
9      107    -3
7     98     1
5    710      3
3   69       -3
1  38        5
-1 15         -4
-3 3          3
-51           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a40.gif

K11a40

K11a42.gif

K11a42