K11a293

From Knot Atlas
Revision as of 16:17, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a292.gif

K11a292

K11a294.gif

K11a294

K11a293.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a293 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,4,11,3 X16,5,17,6 X22,8,1,7 X4,10,5,9 X18,11,19,12 X20,13,21,14 X8,15,9,16 X2,17,3,18 X12,19,13,20 X14,21,15,22
Gauss code 1, -9, 2, -5, 3, -1, 4, -8, 5, -2, 6, -10, 7, -11, 8, -3, 9, -6, 10, -7, 11, -4
Dowker-Thistlethwaite code 6 10 16 22 4 18 20 8 2 12 14
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a293 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number
3-genus 4
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a293/ThurstonBennequinNumber
Hyperbolic Volume 13.4596
A-Polynomial See Data:K11a293/A-polynomial

[edit Notes for K11a293's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 4

[edit Notes for K11a293's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 81, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant Data:K11a293/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (4, -8)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of K11a293. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
5           11
3          2 -2
1         31 2
-1        52  -3
-3       63   3
-5      66    0
-7     75     2
-9    46      2
-11   47       -3
-13  24        2
-15 14         -3
-17 2          2
-191           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a292.gif

K11a292

K11a294.gif

K11a294