K11a293
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X6271 X10,4,11,3 X16,5,17,6 X22,8,1,7 X4,10,5,9 X18,11,19,12 X20,13,21,14 X8,15,9,16 X2,17,3,18 X12,19,13,20 X14,21,15,22 |
| Gauss code | 1, -9, 2, -5, 3, -1, 4, -8, 5, -2, 6, -10, 7, -11, 8, -3, 9, -6, 10, -7, 11, -4 |
| Dowker-Thistlethwaite code | 6 10 16 22 4 18 20 8 2 12 14 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-5 t^3+12 t^2-15 t+15-15 t^{-1} +12 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+3 z^6+2 z^4+4 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{3,t+1\} }[/math] |
| Determinant and Signature | { 81, -4 } |
| Jones polynomial | [math]\displaystyle{ q^2-3 q+5-8 q^{-1} +11 q^{-2} -11 q^{-3} +13 q^{-4} -11 q^{-5} +8 q^{-6} -6 q^{-7} +3 q^{-8} - q^{-9} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ a^4 z^8-a^6 z^6+6 a^4 z^6-2 a^2 z^6-4 a^6 z^4+14 a^4 z^4-9 a^2 z^4+z^4-5 a^6 z^2+17 a^4 z^2-11 a^2 z^2+3 z^2-4 a^6+8 a^4-4 a^2+1 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^3 a^{11}+3 z^4 a^{10}+6 z^5 a^9-5 z^3 a^9+2 z a^9+8 z^6 a^8-10 z^4 a^8+2 z^2 a^8+9 z^7 a^7-16 z^5 a^7+4 z^3 a^7-2 z a^7+9 z^8 a^6-24 z^6 a^6+18 z^4 a^6-11 z^2 a^6+4 a^6+6 z^9 a^5-15 z^7 a^5+z^5 a^5+10 z^3 a^5-6 z a^5+2 z^{10} a^4+3 z^8 a^4-36 z^6 a^4+51 z^4 a^4-25 z^2 a^4+8 a^4+9 z^9 a^3-40 z^7 a^3+50 z^5 a^3-15 z^3 a^3-2 z a^3+2 z^{10} a^2-5 z^8 a^2-9 z^6 a^2+28 z^4 a^2-17 z^2 a^2+4 a^2+3 z^9 a-16 z^7 a+27 z^5 a-15 z^3 a+z^8-5 z^6+8 z^4-5 z^2+1 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{26}+q^{24}-2 q^{22}-q^{20}-q^{18}-q^{16}+4 q^{14}+4 q^{10}+q^8+q^4-2 q^2- q^{-2} + q^{-6} }[/math] |
| The G2 invariant | Data:K11a293/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a293"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-5 t^3+12 t^2-15 t+15-15 t^{-1} +12 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+3 z^6+2 z^4+4 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{3,t+1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 81, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^2-3 q+5-8 q^{-1} +11 q^{-2} -11 q^{-3} +13 q^{-4} -11 q^{-5} +8 q^{-6} -6 q^{-7} +3 q^{-8} - q^{-9} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ a^4 z^8-a^6 z^6+6 a^4 z^6-2 a^2 z^6-4 a^6 z^4+14 a^4 z^4-9 a^2 z^4+z^4-5 a^6 z^2+17 a^4 z^2-11 a^2 z^2+3 z^2-4 a^6+8 a^4-4 a^2+1 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^3 a^{11}+3 z^4 a^{10}+6 z^5 a^9-5 z^3 a^9+2 z a^9+8 z^6 a^8-10 z^4 a^8+2 z^2 a^8+9 z^7 a^7-16 z^5 a^7+4 z^3 a^7-2 z a^7+9 z^8 a^6-24 z^6 a^6+18 z^4 a^6-11 z^2 a^6+4 a^6+6 z^9 a^5-15 z^7 a^5+z^5 a^5+10 z^3 a^5-6 z a^5+2 z^{10} a^4+3 z^8 a^4-36 z^6 a^4+51 z^4 a^4-25 z^2 a^4+8 a^4+9 z^9 a^3-40 z^7 a^3+50 z^5 a^3-15 z^3 a^3-2 z a^3+2 z^{10} a^2-5 z^8 a^2-9 z^6 a^2+28 z^4 a^2-17 z^2 a^2+4 a^2+3 z^9 a-16 z^7 a+27 z^5 a-15 z^3 a+z^8-5 z^6+8 z^4-5 z^2+1 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a293"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-5 t^3+12 t^2-15 t+15-15 t^{-1} +12 t^{-2} -5 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ q^2-3 q+5-8 q^{-1} +11 q^{-2} -11 q^{-3} +13 q^{-4} -11 q^{-5} +8 q^{-6} -6 q^{-7} +3 q^{-8} - q^{-9} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (4, -8) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11a293. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



