K11n2

From Knot Atlas
Revision as of 16:17, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11n1.gif

K11n1

K11n3.gif

K11n3

K11n2.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n2 at Knotilus!


Knot K11n2.
A graph, knot K11n2.
A part of a knot and a part of a graph.

Knot presentations

Planar diagram presentation X4251 X8394 X10,6,11,5 X7,15,8,14 X2,9,3,10 X16,12,17,11 X20,14,21,13 X15,7,16,6 X22,18,1,17 X12,20,13,19 X18,22,19,21
Gauss code 1, -5, 2, -1, 3, 8, -4, -2, 5, -3, 6, -10, 7, 4, -8, -6, 9, -11, 10, -7, 11, -9
Dowker-Thistlethwaite code 4 8 10 -14 2 16 20 -6 22 12 18
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11n2 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for K11n2's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 57, 4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11n2/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n2/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {10_14, K11a161,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, 5)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 4 is the signature of K11n2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-101234567χ
19         2-2
17        3 3
15       42 -2
13      53  2
11     54   -1
9    45    -1
7   35     2
5  24      -2
3 14       3
1 1        -1
-11         1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n1.gif

K11n1

K11n3.gif

K11n3