K11a52

From Knot Atlas
Revision as of 16:24, 1 September 2005 by ScottTestRobot (talk | contribs)
Jump to navigationJump to search

K11a51.gif

K11a51

K11a53.gif

K11a53

K11a52.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a52 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8394 X14,5,15,6 X12,8,13,7 X2,9,3,10 X18,12,19,11 X22,13,1,14 X20,16,21,15 X10,18,11,17 X16,20,17,19 X6,21,7,22
Gauss code 1, -5, 2, -1, 3, -11, 4, -2, 5, -9, 6, -4, 7, -3, 8, -10, 9, -6, 10, -8, 11, -7
Dowker-Thistlethwaite code 4 8 14 12 2 18 22 20 10 16 6
A Braid Representative {{{braid_table}}}
A Morse Link Presentation K11a52 ML.gif

Three dimensional invariants

Symmetry type Chiral
Unknotting number
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a52/ThurstonBennequinNumber
Hyperbolic Volume 16.8243
A-Polynomial See Data:K11a52/A-polynomial

[edit Notes for K11a52's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus
Rasmussen s-Invariant 0

[edit Notes for K11a52's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 137, 0 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant Data:K11a52/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a52/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (2, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 0 is the signature of K11a52. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          4 -4
9         61 5
7        94  -5
5       116   5
3      119    -2
1     1111     0
-1    812      4
-3   510       -5
-5  28        6
-7 15         -4
-9 2          2
-111           -1
Integral Khovanov Homology

(db, data source)

  

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a51.gif

K11a51

K11a53.gif

K11a53