K11a53
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8394 X14,6,15,5 X16,7,17,8 X2,9,3,10 X18,11,19,12 X20,13,21,14 X22,16,1,15 X10,17,11,18 X12,19,13,20 X6,21,7,22 |
| Gauss code | 1, -5, 2, -1, 3, -11, 4, -2, 5, -9, 6, -10, 7, -3, 8, -4, 9, -6, 10, -7, 11, -8 |
| Dowker-Thistlethwaite code | 4 8 14 16 2 18 20 22 10 12 6 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-6 t^3+14 t^2-18 t+19-18 t^{-1} +14 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+2 z^6-2 z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 97, -4 } |
| Jones polynomial | [math]\displaystyle{ -q+4-6 q^{-1} +10 q^{-2} -13 q^{-3} +15 q^{-4} -15 q^{-5} +13 q^{-6} -10 q^{-7} +6 q^{-8} -3 q^{-9} + q^{-10} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^4 a^8+3 z^2 a^8+a^8-2 z^6 a^6-8 z^4 a^6-8 z^2 a^6-2 a^6+z^8 a^4+5 z^6 a^4+8 z^4 a^4+5 z^2 a^4-z^6 a^2-3 z^4 a^2+2 a^2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^4 a^{12}-z^2 a^{12}+3 z^5 a^{11}-3 z^3 a^{11}+z a^{11}+5 z^6 a^{10}-5 z^4 a^{10}+2 z^2 a^{10}+6 z^7 a^9-6 z^5 a^9+z^3 a^9+z a^9+6 z^8 a^8-8 z^6 a^8+4 z^4 a^8-3 z^2 a^8+a^8+5 z^9 a^7-9 z^7 a^7+7 z^5 a^7-6 z^3 a^7+z a^7+2 z^{10} a^6+4 z^8 a^6-26 z^6 a^6+32 z^4 a^6-16 z^2 a^6+2 a^6+10 z^9 a^5-35 z^7 a^5+38 z^5 a^5-17 z^3 a^5+3 z a^5+2 z^{10} a^4+2 z^8 a^4-29 z^6 a^4+38 z^4 a^4-12 z^2 a^4+5 z^9 a^3-19 z^7 a^3+19 z^5 a^3-6 z^3 a^3+2 z a^3+4 z^8 a^2-16 z^6 a^2+16 z^4 a^2-2 z^2 a^2-2 a^2+z^7 a-3 z^5 a+z^3 a }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{30}-q^{26}+q^{24}-2 q^{22}+2 q^{20}-q^{18}-q^{16}+q^{14}-4 q^{12}+3 q^{10}-q^8+2 q^6+2 q^4+2- q^{-2} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{162}-2 q^{160}+4 q^{158}-6 q^{156}+5 q^{154}-4 q^{152}-2 q^{150}+11 q^{148}-20 q^{146}+28 q^{144}-30 q^{142}+22 q^{140}-4 q^{138}-21 q^{136}+50 q^{134}-68 q^{132}+71 q^{130}-56 q^{128}+20 q^{126}+22 q^{124}-60 q^{122}+91 q^{120}-96 q^{118}+87 q^{116}-61 q^{114}+18 q^{112}+33 q^{110}-87 q^{108}+125 q^{106}-133 q^{104}+99 q^{102}-29 q^{100}-57 q^{98}+125 q^{96}-140 q^{94}+94 q^{92}-100 q^{88}+143 q^{86}-110 q^{84}+9 q^{82}+119 q^{80}-205 q^{78}+213 q^{76}-129 q^{74}-20 q^{72}+170 q^{70}-272 q^{68}+278 q^{66}-195 q^{64}+47 q^{62}+107 q^{60}-213 q^{58}+249 q^{56}-202 q^{54}+87 q^{52}+43 q^{50}-151 q^{48}+181 q^{46}-129 q^{44}+16 q^{42}+113 q^{40}-183 q^{38}+167 q^{36}-68 q^{34}-73 q^{32}+199 q^{30}-249 q^{28}+203 q^{26}-79 q^{24}-66 q^{22}+181 q^{20}-216 q^{18}+181 q^{16}-90 q^{14}-4 q^{12}+72 q^{10}-101 q^8+91 q^6-55 q^4+21 q^2+7-18 q^{-2} +17 q^{-4} -14 q^{-6} +7 q^{-8} -3 q^{-10} + q^{-12} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a53"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-6 t^3+14 t^2-18 t+19-18 t^{-1} +14 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+2 z^6-2 z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 97, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q+4-6 q^{-1} +10 q^{-2} -13 q^{-3} +15 q^{-4} -15 q^{-5} +13 q^{-6} -10 q^{-7} +6 q^{-8} -3 q^{-9} + q^{-10} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^4 a^8+3 z^2 a^8+a^8-2 z^6 a^6-8 z^4 a^6-8 z^2 a^6-2 a^6+z^8 a^4+5 z^6 a^4+8 z^4 a^4+5 z^2 a^4-z^6 a^2-3 z^4 a^2+2 a^2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^4 a^{12}-z^2 a^{12}+3 z^5 a^{11}-3 z^3 a^{11}+z a^{11}+5 z^6 a^{10}-5 z^4 a^{10}+2 z^2 a^{10}+6 z^7 a^9-6 z^5 a^9+z^3 a^9+z a^9+6 z^8 a^8-8 z^6 a^8+4 z^4 a^8-3 z^2 a^8+a^8+5 z^9 a^7-9 z^7 a^7+7 z^5 a^7-6 z^3 a^7+z a^7+2 z^{10} a^6+4 z^8 a^6-26 z^6 a^6+32 z^4 a^6-16 z^2 a^6+2 a^6+10 z^9 a^5-35 z^7 a^5+38 z^5 a^5-17 z^3 a^5+3 z a^5+2 z^{10} a^4+2 z^8 a^4-29 z^6 a^4+38 z^4 a^4-12 z^2 a^4+5 z^9 a^3-19 z^7 a^3+19 z^5 a^3-6 z^3 a^3+2 z a^3+4 z^8 a^2-16 z^6 a^2+16 z^4 a^2-2 z^2 a^2-2 a^2+z^7 a-3 z^5 a+z^3 a }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a53"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-6 t^3+14 t^2-18 t+19-18 t^{-1} +14 t^{-2} -6 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ -q+4-6 q^{-1} +10 q^{-2} -13 q^{-3} +15 q^{-4} -15 q^{-5} +13 q^{-6} -10 q^{-7} +6 q^{-8} -3 q^{-9} + q^{-10} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11a53. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



