K11a14
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8493 X12,5,13,6 X2837 X14,9,15,10 X18,11,19,12 X6,13,7,14 X20,16,21,15 X10,17,11,18 X22,20,1,19 X16,22,17,21 |
| Gauss code | 1, -4, 2, -1, 3, -7, 4, -2, 5, -9, 6, -3, 7, -5, 8, -11, 9, -6, 10, -8, 11, -10 |
| Dowker-Thistlethwaite code | 4 8 12 2 14 18 6 20 10 22 16 |
| A Braid Representative | {{{braid_table}}} |
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-5 t^3+15 t^2-28 t+35-28 t^{-1} +15 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+3 z^6+5 z^4+3 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 133, 0 } |
| Jones polynomial | [math]\displaystyle{ q^6-4 q^5+8 q^4-14 q^3+19 q^2-21 q+22-18 q^{-1} +14 q^{-2} -8 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-8 z^4 a^{-2} +z^4 a^{-4} +16 z^4-7 a^2 z^2-12 z^2 a^{-2} +2 z^2 a^{-4} +20 z^2-4 a^2-6 a^{-2} + a^{-4} +10 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-2} +z^{10}+5 a z^9+9 z^9 a^{-1} +4 z^9 a^{-3} +8 a^2 z^8+17 z^8 a^{-2} +6 z^8 a^{-4} +19 z^8+6 a^3 z^7+4 a z^7-z^7 a^{-1} +5 z^7 a^{-3} +4 z^7 a^{-5} +3 a^4 z^6-14 a^2 z^6-46 z^6 a^{-2} -12 z^6 a^{-4} +z^6 a^{-6} -50 z^6+a^5 z^5-9 a^3 z^5-24 a z^5-36 z^5 a^{-1} -32 z^5 a^{-3} -10 z^5 a^{-5} -4 a^4 z^4+17 a^2 z^4+41 z^4 a^{-2} +6 z^4 a^{-4} -2 z^4 a^{-6} +54 z^4-2 a^5 z^3+7 a^3 z^3+29 a z^3+43 z^3 a^{-1} +31 z^3 a^{-3} +8 z^3 a^{-5} +a^4 z^2-13 a^2 z^2-21 z^2 a^{-2} -2 z^2 a^{-4} +z^2 a^{-6} -32 z^2+a^5 z-3 a^3 z-12 a z-16 z a^{-1} -10 z a^{-3} -2 z a^{-5} +4 a^2+6 a^{-2} + a^{-4} +10 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{14}+q^{12}-4 q^{10}+q^8+q^6-2 q^4+7 q^2-1+5 q^{-2} -2 q^{-6} +2 q^{-8} -5 q^{-10} + q^{-12} - q^{-16} + q^{-18} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{80}-2 q^{78}+5 q^{76}-8 q^{74}+10 q^{72}-10 q^{70}+4 q^{68}+10 q^{66}-29 q^{64}+52 q^{62}-74 q^{60}+78 q^{58}-61 q^{56}+7 q^{54}+89 q^{52}-198 q^{50}+290 q^{48}-316 q^{46}+225 q^{44}-31 q^{42}-245 q^{40}+508 q^{38}-649 q^{36}+586 q^{34}-312 q^{32}-108 q^{30}+511 q^{28}-748 q^{26}+712 q^{24}-413 q^{22}-30 q^{20}+427 q^{18}-607 q^{16}+494 q^{14}-126 q^{12}-308 q^{10}+628 q^8-659 q^6+373 q^4+140 q^2-660+1001 q^{-2} -986 q^{-4} +624 q^{-6} -15 q^{-8} -611 q^{-10} +1037 q^{-12} -1105 q^{-14} +803 q^{-16} -249 q^{-18} -340 q^{-20} +734 q^{-22} -798 q^{-24} +534 q^{-26} -76 q^{-28} -370 q^{-30} +589 q^{-32} -511 q^{-34} +163 q^{-36} +282 q^{-38} -631 q^{-40} +730 q^{-42} -540 q^{-44} +132 q^{-46} +313 q^{-48} -642 q^{-50} +740 q^{-52} -591 q^{-54} +284 q^{-56} +60 q^{-58} -328 q^{-60} +447 q^{-62} -411 q^{-64} +273 q^{-66} -95 q^{-68} -52 q^{-70} +134 q^{-72} -153 q^{-74} +123 q^{-76} -69 q^{-78} +24 q^{-80} +9 q^{-82} -23 q^{-84} +21 q^{-86} -16 q^{-88} +8 q^{-90} -3 q^{-92} + q^{-94} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a14"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-5 t^3+15 t^2-28 t+35-28 t^{-1} +15 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+3 z^6+5 z^4+3 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 133, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^6-4 q^5+8 q^4-14 q^3+19 q^2-21 q+22-18 q^{-1} +14 q^{-2} -8 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +6 z^6-4 a^2 z^4-8 z^4 a^{-2} +z^4 a^{-4} +16 z^4-7 a^2 z^2-12 z^2 a^{-2} +2 z^2 a^{-4} +20 z^2-4 a^2-6 a^{-2} + a^{-4} +10 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-2} +z^{10}+5 a z^9+9 z^9 a^{-1} +4 z^9 a^{-3} +8 a^2 z^8+17 z^8 a^{-2} +6 z^8 a^{-4} +19 z^8+6 a^3 z^7+4 a z^7-z^7 a^{-1} +5 z^7 a^{-3} +4 z^7 a^{-5} +3 a^4 z^6-14 a^2 z^6-46 z^6 a^{-2} -12 z^6 a^{-4} +z^6 a^{-6} -50 z^6+a^5 z^5-9 a^3 z^5-24 a z^5-36 z^5 a^{-1} -32 z^5 a^{-3} -10 z^5 a^{-5} -4 a^4 z^4+17 a^2 z^4+41 z^4 a^{-2} +6 z^4 a^{-4} -2 z^4 a^{-6} +54 z^4-2 a^5 z^3+7 a^3 z^3+29 a z^3+43 z^3 a^{-1} +31 z^3 a^{-3} +8 z^3 a^{-5} +a^4 z^2-13 a^2 z^2-21 z^2 a^{-2} -2 z^2 a^{-4} +z^2 a^{-6} -32 z^2+a^5 z-3 a^3 z-12 a z-16 z a^{-1} -10 z a^{-3} -2 z a^{-5} +4 a^2+6 a^{-2} + a^{-4} +10 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a14"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-5 t^3+15 t^2-28 t+35-28 t^{-1} +15 t^{-2} -5 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ q^6-4 q^5+8 q^4-14 q^3+19 q^2-21 q+22-18 q^{-1} +14 q^{-2} -8 q^{-3} +3 q^{-4} - q^{-5} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (3, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



