K11a15
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8493 X12,5,13,6 X2837 X14,9,15,10 X18,12,19,11 X6,13,7,14 X20,15,21,16 X22,17,1,18 X10,20,11,19 X16,21,17,22 |
| Gauss code | 1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -3, 7, -5, 8, -11, 9, -6, 10, -8, 11, -9 |
| Dowker-Thistlethwaite code | 4 8 12 2 14 18 6 20 22 10 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+5 t^3-13 t^2+22 t-25+22 t^{-1} -13 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-3 z^6-3 z^4-z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 107, -2 } |
| Jones polynomial | [math]\displaystyle{ -q^4+3 q^3-6 q^2+11 q-14+17 q^{-1} -17 q^{-2} +15 q^{-3} -12 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-15 a^2 z^4-z^4 a^{-2} +9 z^4+6 a^4 z^2-18 a^2 z^2-3 z^2 a^{-2} +14 z^2+3 a^4-8 a^2-2 a^{-2} +8 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^2 z^{10}+z^{10}+5 a^3 z^9+8 a z^9+3 z^9 a^{-1} +9 a^4 z^8+15 a^2 z^8+3 z^8 a^{-2} +9 z^8+9 a^5 z^7+a^3 z^7-15 a z^7-6 z^7 a^{-1} +z^7 a^{-3} +6 a^6 z^6-16 a^4 z^6-52 a^2 z^6-12 z^6 a^{-2} -42 z^6+3 a^7 z^5-15 a^5 z^5-25 a^3 z^5-9 a z^5-6 z^5 a^{-1} -4 z^5 a^{-3} +a^8 z^4-6 a^6 z^4+13 a^4 z^4+58 a^2 z^4+16 z^4 a^{-2} +54 z^4-2 a^7 z^3+14 a^5 z^3+29 a^3 z^3+23 a z^3+15 z^3 a^{-1} +5 z^3 a^{-3} -a^8 z^2+3 a^6 z^2-7 a^4 z^2-33 a^2 z^2-9 z^2 a^{-2} -31 z^2-5 a^5 z-11 a^3 z-10 a z-6 z a^{-1} -2 z a^{-3} +3 a^4+8 a^2+2 a^{-2} +8 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{20}-q^{18}+3 q^{16}-q^{14}-q^{12}+q^{10}-5 q^8+2 q^6-3 q^4+2 q^2+3+4 q^{-4} - q^{-6} - q^{-12} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+6 q^{106}-5 q^{104}+9 q^{100}-19 q^{98}+29 q^{96}-37 q^{94}+33 q^{92}-20 q^{90}-5 q^{88}+44 q^{86}-78 q^{84}+105 q^{82}-114 q^{80}+87 q^{78}-31 q^{76}-56 q^{74}+155 q^{72}-222 q^{70}+240 q^{68}-180 q^{66}+52 q^{64}+114 q^{62}-253 q^{60}+318 q^{58}-267 q^{56}+116 q^{54}+78 q^{52}-231 q^{50}+278 q^{48}-189 q^{46}+10 q^{44}+180 q^{42}-295 q^{40}+259 q^{38}-97 q^{36}-144 q^{34}+352 q^{32}-446 q^{30}+366 q^{28}-152 q^{26}-136 q^{24}+378 q^{22}-501 q^{20}+449 q^{18}-254 q^{16}-18 q^{14}+262 q^{12}-389 q^{10}+367 q^8-197 q^6-28 q^4+220 q^2-291+223 q^{-2} -32 q^{-4} -173 q^{-6} +318 q^{-8} -320 q^{-10} +188 q^{-12} +29 q^{-14} -235 q^{-16} +359 q^{-18} -346 q^{-20} +222 q^{-22} -39 q^{-24} -136 q^{-26} +236 q^{-28} -246 q^{-30} +181 q^{-32} -80 q^{-34} -17 q^{-36} +76 q^{-38} -97 q^{-40} +81 q^{-42} -48 q^{-44} +17 q^{-46} +5 q^{-48} -16 q^{-50} +14 q^{-52} -11 q^{-54} +6 q^{-56} -2 q^{-58} + q^{-60} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a15"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+5 t^3-13 t^2+22 t-25+22 t^{-1} -13 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-3 z^6-3 z^4-z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 107, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^4+3 q^3-6 q^2+11 q-14+17 q^{-1} -17 q^{-2} +15 q^{-3} -12 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-15 a^2 z^4-z^4 a^{-2} +9 z^4+6 a^4 z^2-18 a^2 z^2-3 z^2 a^{-2} +14 z^2+3 a^4-8 a^2-2 a^{-2} +8 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^2 z^{10}+z^{10}+5 a^3 z^9+8 a z^9+3 z^9 a^{-1} +9 a^4 z^8+15 a^2 z^8+3 z^8 a^{-2} +9 z^8+9 a^5 z^7+a^3 z^7-15 a z^7-6 z^7 a^{-1} +z^7 a^{-3} +6 a^6 z^6-16 a^4 z^6-52 a^2 z^6-12 z^6 a^{-2} -42 z^6+3 a^7 z^5-15 a^5 z^5-25 a^3 z^5-9 a z^5-6 z^5 a^{-1} -4 z^5 a^{-3} +a^8 z^4-6 a^6 z^4+13 a^4 z^4+58 a^2 z^4+16 z^4 a^{-2} +54 z^4-2 a^7 z^3+14 a^5 z^3+29 a^3 z^3+23 a z^3+15 z^3 a^{-1} +5 z^3 a^{-3} -a^8 z^2+3 a^6 z^2-7 a^4 z^2-33 a^2 z^2-9 z^2 a^{-2} -31 z^2-5 a^5 z-11 a^3 z-10 a z-6 z a^{-1} -2 z a^{-3} +3 a^4+8 a^2+2 a^{-2} +8 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a15"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+5 t^3-13 t^2+22 t-25+22 t^{-1} -13 t^{-2} +5 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ -q^4+3 q^3-6 q^2+11 q-14+17 q^{-1} -17 q^{-2} +15 q^{-3} -12 q^{-4} +7 q^{-5} -3 q^{-6} + q^{-7} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-1, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11a15. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



