K11a16
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8493 X12,5,13,6 X2837 X14,9,15,10 X18,12,19,11 X6,13,7,14 X22,15,1,16 X20,17,21,18 X10,20,11,19 X16,21,17,22 |
| Gauss code | 1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -3, 7, -5, 8, -11, 9, -6, 10, -9, 11, -8 |
| Dowker-Thistlethwaite code | 4 8 12 2 14 18 6 22 20 10 16 |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -2 t^3+10 t^2-24 t+33-24 t^{-1} +10 t^{-2} -2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -2 z^6-2 z^4-2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 105, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^5+3 q^4-6 q^3+11 q^2-14 q+17-17 q^{-1} +14 q^{-2} -11 q^{-3} +7 q^{-4} -3 q^{-5} + q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^6-z^6+a^4 z^4-3 a^2 z^4+2 z^4 a^{-2} -2 z^4+2 a^4 z^2-5 a^2 z^2+4 z^2 a^{-2} -z^2 a^{-4} -2 z^2+2 a^4-3 a^2+3 a^{-2} - a^{-4} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^2 z^{10}+z^{10}+4 a^3 z^9+7 a z^9+3 z^9 a^{-1} +5 a^4 z^8+9 a^2 z^8+4 z^8 a^{-2} +8 z^8+3 a^5 z^7-7 a^3 z^7-13 a z^7+z^7 a^{-1} +4 z^7 a^{-3} +a^6 z^6-14 a^4 z^6-31 a^2 z^6-z^6 a^{-2} +3 z^6 a^{-4} -20 z^6-8 a^5 z^5+2 a^3 z^5+11 a z^5-4 z^5 a^{-1} -4 z^5 a^{-3} +z^5 a^{-5} -3 a^6 z^4+13 a^4 z^4+37 a^2 z^4-7 z^4 a^{-2} -6 z^4 a^{-4} +20 z^4+5 a^5 z^3-2 a^3 z^3-8 a z^3-z^3 a^{-1} -2 z^3 a^{-3} -2 z^3 a^{-5} +2 a^6 z^2-8 a^4 z^2-20 a^2 z^2+7 z^2 a^{-2} +4 z^2 a^{-4} -7 z^2-a^5 z+2 a^3 z+5 a z+3 z a^{-1} +2 z a^{-3} +z a^{-5} +2 a^4+3 a^2-3 a^{-2} - a^{-4} }[/math] |
| The A2 invariant | Data:K11a16/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a16/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a16"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -2 t^3+10 t^2-24 t+33-24 t^{-1} +10 t^{-2} -2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -2 z^6-2 z^4-2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 105, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^5+3 q^4-6 q^3+11 q^2-14 q+17-17 q^{-1} +14 q^{-2} -11 q^{-3} +7 q^{-4} -3 q^{-5} + q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^6-z^6+a^4 z^4-3 a^2 z^4+2 z^4 a^{-2} -2 z^4+2 a^4 z^2-5 a^2 z^2+4 z^2 a^{-2} -z^2 a^{-4} -2 z^2+2 a^4-3 a^2+3 a^{-2} - a^{-4} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^2 z^{10}+z^{10}+4 a^3 z^9+7 a z^9+3 z^9 a^{-1} +5 a^4 z^8+9 a^2 z^8+4 z^8 a^{-2} +8 z^8+3 a^5 z^7-7 a^3 z^7-13 a z^7+z^7 a^{-1} +4 z^7 a^{-3} +a^6 z^6-14 a^4 z^6-31 a^2 z^6-z^6 a^{-2} +3 z^6 a^{-4} -20 z^6-8 a^5 z^5+2 a^3 z^5+11 a z^5-4 z^5 a^{-1} -4 z^5 a^{-3} +z^5 a^{-5} -3 a^6 z^4+13 a^4 z^4+37 a^2 z^4-7 z^4 a^{-2} -6 z^4 a^{-4} +20 z^4+5 a^5 z^3-2 a^3 z^3-8 a z^3-z^3 a^{-1} -2 z^3 a^{-3} -2 z^3 a^{-5} +2 a^6 z^2-8 a^4 z^2-20 a^2 z^2+7 z^2 a^{-2} +4 z^2 a^{-4} -7 z^2-a^5 z+2 a^3 z+5 a z+3 z a^{-1} +2 z a^{-3} +z a^{-5} +2 a^4+3 a^2-3 a^{-2} - a^{-4} }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a280,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a16"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -2 t^3+10 t^2-24 t+33-24 t^{-1} +10 t^{-2} -2 t^{-3} }[/math], [math]\displaystyle{ -q^5+3 q^4-6 q^3+11 q^2-14 q+17-17 q^{-1} +14 q^{-2} -11 q^{-3} +7 q^{-4} -3 q^{-5} + q^{-6} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a280,} |
Vassiliev invariants
| V2 and V3: | (-2, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a16. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



