9 18

From Knot Atlas
Revision as of 16:57, 1 September 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

9 17.gif

9_17

9 19.gif

9_19

9 18.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 9 18's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 9 18 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X3,12,4,13 X5,14,6,15 X9,18,10,1 X17,6,18,7 X7,16,8,17 X15,8,16,9 X13,10,14,11 X11,2,12,3
Gauss code -1, 9, -2, 1, -3, 5, -6, 7, -4, 8, -9, 2, -8, 3, -7, 6, -5, 4
Dowker-Thistlethwaite code 4 12 14 16 18 2 10 8 6
Conway Notation [3222]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart4.gif

Length is 11, width is 4,

Braid index is 4

9 18 ML.gif 9 18 AP.gif
[{11, 5}, {1, 9}, {8, 10}, {9, 11}, {10, 6}, {5, 7}, {4, 8}, {6, 3}, {2, 4}, {3, 1}, {7, 2}]

[edit Notes on presentations of 9 18]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 2
3-genus 2
Bridge index 2
Super bridge index
Nakanishi index 1
Maximal Thurston-Bennequin number [-14][3]
Hyperbolic Volume 10.0577
A-Polynomial See Data:9 18/A-polynomial

[edit Notes for 9 18's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus
Topological 4 genus
Concordance genus
Rasmussen s-Invariant -4

[edit Notes for 9 18's four dimensional invariants]

Polynomial invariants

Alexander polynomial
Conway polynomial
2nd Alexander ideal (db, data sources)
Determinant and Signature { 41, -4 }
Jones polynomial
HOMFLY-PT polynomial (db, data sources)
Kauffman polynomial (db, data sources)
The A2 invariant
The G2 invariant

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a246,}

Same Jones Polynomial (up to mirroring, ): {}

Vassiliev invariants

V2 and V3: (6, -15)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of 9 18. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-9-8-7-6-5-4-3-2-10χ
-3         11
-5        21-1
-7       3  3
-9      32  -1
-11     43   1
-13    33    0
-15   34     -1
-17  13      2
-19 13       -2
-21 1        1
-231         -1
Integral Khovanov Homology

(db, data source)

  

The Coloured Jones Polynomials