10 2

From Knot Atlas
Revision as of 17:02, 1 September 2005 by ScottTestRobot (talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to navigationJump to search

10 1.gif

10_1

10 3.gif

10_3

10 2.gif
(KnotPlot image)

See the full Rolfsen Knot Table.

Visit 10 2's page at the Knot Server (KnotPlot driven, includes 3D interactive images!)

Visit 10 2 at Knotilus!


Knot presentations

Planar diagram presentation X1425 X5,14,6,15 X3,13,4,12 X13,3,14,2 X7,16,8,17 X9,18,10,19 X11,20,12,1 X15,6,16,7 X17,8,18,9 X19,10,20,11
Gauss code -1, 4, -3, 1, -2, 8, -5, 9, -6, 10, -7, 3, -4, 2, -8, 5, -9, 6, -10, 7
Dowker-Thistlethwaite code 4 12 14 16 18 20 2 6 8 10
Conway Notation [712]


Minimum Braid Representative A Morse Link Presentation An Arc Presentation
BraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif

Length is 10, width is 3,

Braid index is 3

10 2 ML.gif 10 2 AP.gif
[{12, 2}, {1, 10}, {11, 3}, {2, 4}, {10, 12}, {3, 5}, {4, 6}, {5, 7}, {6, 8}, {7, 9}, {8, 11}, {9, 1}]

[edit Notes on presentations of 10 2]


Three dimensional invariants

Symmetry type Reversible
Unknotting number 3
3-genus 4
Bridge index 2
Super bridge index Missing
Nakanishi index 1
Maximal Thurston-Bennequin number [-15][3]
Hyperbolic Volume 5.11484
A-Polynomial See Data:10 2/A-polynomial

[edit Notes for 10 2's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus [math]\displaystyle{ 3 }[/math]
Topological 4 genus [math]\displaystyle{ 3 }[/math]
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant -6

[edit Notes for 10 2's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -t^4+3 t^3-3 t^2+3 t-3+3 t^{-1} -3 t^{-2} +3 t^{-3} - t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ -z^8-5 z^6-5 z^4+2 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 23, -6 }
Jones polynomial [math]\displaystyle{ q^{-1} - q^{-2} +2 q^{-3} -2 q^{-4} +3 q^{-5} -3 q^{-6} +3 q^{-7} -3 q^{-8} +2 q^{-9} -2 q^{-10} + q^{-11} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^8+5 z^4 a^8+6 z^2 a^8+a^8-z^8 a^6-7 z^6 a^6-16 z^4 a^6-14 z^2 a^6-4 a^6+z^6 a^4+6 z^4 a^4+10 z^2 a^4+4 a^4 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^2 a^{14}+2 z^3 a^{13}-z a^{13}+2 z^4 a^{12}-z^2 a^{12}+2 z^5 a^{11}-2 z^3 a^{11}-z a^{11}+2 z^6 a^{10}-4 z^4 a^{10}+2 z^7 a^9-6 z^5 a^9+2 z^3 a^9+z a^9+2 z^8 a^8-9 z^6 a^8+11 z^4 a^8-5 z^2 a^8+a^8+z^9 a^7-4 z^7 a^7+2 z^5 a^7+3 z^3 a^7-z a^7+3 z^8 a^6-18 z^6 a^6+33 z^4 a^6-21 z^2 a^6+4 a^6+z^9 a^5-6 z^7 a^5+10 z^5 a^5-3 z^3 a^5-2 z a^5+z^8 a^4-7 z^6 a^4+16 z^4 a^4-14 z^2 a^4+4 a^4 }[/math]
The A2 invariant [math]\displaystyle{ q^{32}-q^{26}-q^{24}-q^{22}-q^{20}+q^{18}+q^{14}+q^{10}+q^8+q^6+q^4 }[/math]
The G2 invariant [math]\displaystyle{ q^{182}-q^{180}+q^{178}-q^{176}-q^{174}-q^{170}+2 q^{168}-2 q^{166}+q^{164}+q^{158}-q^{156}+q^{154}-q^{152}+q^{150}-q^{146}+2 q^{144}+q^{140}+q^{134}+q^{128}-q^{120}+q^{118}-q^{116}-q^{114}-q^{110}-q^{106}-q^{104}-q^{102}-q^{98}-2 q^{92}+2 q^{90}-2 q^{88}+q^{86}-q^{84}-q^{82}+q^{80}-q^{78}+2 q^{76}-q^{74}-q^{70}-q^{64}+q^{56}+q^{54}-q^{52}+3 q^{50}-2 q^{48}+2 q^{46}+q^{44}-q^{42}+4 q^{40}-2 q^{38}+3 q^{36}+q^{34}+q^{32}+q^{30}-q^{28}+2 q^{26}+q^{22} }[/math]

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (2, -2)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 8 }[/math] [math]\displaystyle{ -16 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{268}{3} }[/math] [math]\displaystyle{ \frac{164}{3} }[/math] [math]\displaystyle{ -128 }[/math] [math]\displaystyle{ -\frac{1600}{3} }[/math] [math]\displaystyle{ -\frac{544}{3} }[/math] [math]\displaystyle{ -272 }[/math] [math]\displaystyle{ \frac{256}{3} }[/math] [math]\displaystyle{ 128 }[/math] [math]\displaystyle{ \frac{2144}{3} }[/math] [math]\displaystyle{ \frac{1312}{3} }[/math] [math]\displaystyle{ \frac{38551}{15} }[/math] [math]\displaystyle{ -\frac{13084}{15} }[/math] [math]\displaystyle{ \frac{137164}{45} }[/math] [math]\displaystyle{ \frac{1817}{9} }[/math] [math]\displaystyle{ \frac{6151}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-6 is the signature of 10 2. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-1012χ
-1          11
-3           0
-5        21 1
-7       11  0
-9      21   1
-11     11    0
-13    22     0
-15   11      0
-17  12       -1
-19 11        0
-21 1         -1
-231          1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-7 }[/math] [math]\displaystyle{ i=-5 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

The Coloured Jones Polynomials