K11a104
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X14,5,15,6 X12,8,13,7 X20,10,21,9 X2,11,3,12 X16,13,17,14 X6,15,7,16 X22,18,1,17 X8,20,9,19 X18,22,19,21 |
| Gauss code | 1, -6, 2, -1, 3, -8, 4, -10, 5, -2, 6, -4, 7, -3, 8, -7, 9, -11, 10, -5, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 14 12 20 2 16 6 22 8 18 |
| A Braid Representative | |||||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -2 t^3+12 t^2-29 t+39-29 t^{-1} +12 t^{-2} -2 t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -2 z^6+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 125, 0 } |
| Jones polynomial | [math]\displaystyle{ q^6-4 q^5+8 q^4-13 q^3+18 q^2-20 q+20-17 q^{-1} +13 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^6 a^{-2} -z^6+2 a^2 z^4-2 z^4 a^{-2} +z^4 a^{-4} -z^4-a^4 z^2+3 a^2 z^2-2 z^2 a^{-2} +z^2 a^{-4} -a^4+2 a^2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-2} +z^{10}+4 a z^9+8 z^9 a^{-1} +4 z^9 a^{-3} +6 a^2 z^8+14 z^8 a^{-2} +6 z^8 a^{-4} +14 z^8+5 a^3 z^7+4 a z^7-3 z^7 a^{-1} +2 z^7 a^{-3} +4 z^7 a^{-5} +3 a^4 z^6-6 a^2 z^6-36 z^6 a^{-2} -13 z^6 a^{-4} +z^6 a^{-6} -31 z^6+a^5 z^5-6 a^3 z^5-16 a z^5-21 z^5 a^{-1} -22 z^5 a^{-3} -10 z^5 a^{-5} -5 a^4 z^4+a^2 z^4+26 z^4 a^{-2} +7 z^4 a^{-4} -2 z^4 a^{-6} +23 z^4-2 a^5 z^3+2 a^3 z^3+14 a z^3+21 z^3 a^{-1} +18 z^3 a^{-3} +7 z^3 a^{-5} +3 a^4 z^2+3 a^2 z^2-7 z^2 a^{-2} -z^2 a^{-4} +z^2 a^{-6} -5 z^2+a^5 z-4 a z-6 z a^{-1} -4 z a^{-3} -z a^{-5} -a^4-2 a^2 }[/math] |
| The A2 invariant | Data:K11a104/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a104/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a104"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -2 t^3+12 t^2-29 t+39-29 t^{-1} +12 t^{-2} -2 t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -2 z^6+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 125, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^6-4 q^5+8 q^4-13 q^3+18 q^2-20 q+20-17 q^{-1} +13 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^6 a^{-2} -z^6+2 a^2 z^4-2 z^4 a^{-2} +z^4 a^{-4} -z^4-a^4 z^2+3 a^2 z^2-2 z^2 a^{-2} +z^2 a^{-4} -a^4+2 a^2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-2} +z^{10}+4 a z^9+8 z^9 a^{-1} +4 z^9 a^{-3} +6 a^2 z^8+14 z^8 a^{-2} +6 z^8 a^{-4} +14 z^8+5 a^3 z^7+4 a z^7-3 z^7 a^{-1} +2 z^7 a^{-3} +4 z^7 a^{-5} +3 a^4 z^6-6 a^2 z^6-36 z^6 a^{-2} -13 z^6 a^{-4} +z^6 a^{-6} -31 z^6+a^5 z^5-6 a^3 z^5-16 a z^5-21 z^5 a^{-1} -22 z^5 a^{-3} -10 z^5 a^{-5} -5 a^4 z^4+a^2 z^4+26 z^4 a^{-2} +7 z^4 a^{-4} -2 z^4 a^{-6} +23 z^4-2 a^5 z^3+2 a^3 z^3+14 a z^3+21 z^3 a^{-1} +18 z^3 a^{-3} +7 z^3 a^{-5} +3 a^4 z^2+3 a^2 z^2-7 z^2 a^{-2} -z^2 a^{-4} +z^2 a^{-6} -5 z^2+a^5 z-4 a z-6 z a^{-1} -4 z a^{-3} -z a^{-5} -a^4-2 a^2 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a67, K11a168,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a168,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a104"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -2 t^3+12 t^2-29 t+39-29 t^{-1} +12 t^{-2} -2 t^{-3} }[/math], [math]\displaystyle{ q^6-4 q^5+8 q^4-13 q^3+18 q^2-20 q+20-17 q^{-1} +13 q^{-2} -7 q^{-3} +3 q^{-4} - q^{-5} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a67, K11a168,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a168,} |
Vassiliev invariants
| V2 and V3: | (1, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a104. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



