K11a125
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X14,5,15,6 X20,8,21,7 X2,10,3,9 X16,11,17,12 X18,14,19,13 X8,15,9,16 X22,17,1,18 X6,20,7,19 X12,22,13,21 |
| Gauss code | 1, -5, 2, -1, 3, -10, 4, -8, 5, -2, 6, -11, 7, -3, 8, -6, 9, -7, 10, -4, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 14 20 2 16 18 8 22 6 12 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+6 t^3-19 t^2+38 t-47+38 t^{-1} -19 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-2 z^6-3 z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 175, 2 } |
| Jones polynomial | [math]\displaystyle{ -q^8+5 q^7-12 q^6+19 q^5-25 q^4+29 q^3-28 q^2+24 q-17+10 q^{-1} -4 q^{-2} + q^{-3} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-11 z^4 a^{-2} +6 z^4 a^{-4} -z^4 a^{-6} +3 z^4-10 z^2 a^{-2} +7 z^2 a^{-4} -z^2 a^{-6} +4 z^2-3 a^{-2} +3 a^{-4} - a^{-6} +2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 3 z^{10} a^{-2} +3 z^{10} a^{-4} +8 z^9 a^{-1} +19 z^9 a^{-3} +11 z^9 a^{-5} +18 z^8 a^{-2} +26 z^8 a^{-4} +16 z^8 a^{-6} +8 z^8+4 a z^7-9 z^7 a^{-1} -27 z^7 a^{-3} -2 z^7 a^{-5} +12 z^7 a^{-7} +a^2 z^6-55 z^6 a^{-2} -66 z^6 a^{-4} -24 z^6 a^{-6} +5 z^6 a^{-8} -17 z^6-8 a z^5-5 z^5 a^{-1} -3 z^5 a^{-3} -22 z^5 a^{-5} -15 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+50 z^4 a^{-2} +49 z^4 a^{-4} +12 z^4 a^{-6} -3 z^4 a^{-8} +14 z^4+5 a z^3+8 z^3 a^{-1} +12 z^3 a^{-3} +14 z^3 a^{-5} +5 z^3 a^{-7} +a^2 z^2-20 z^2 a^{-2} -16 z^2 a^{-4} -4 z^2 a^{-6} -7 z^2-a z-2 z a^{-1} -2 z a^{-3} -2 z a^{-5} -z a^{-7} +3 a^{-2} +3 a^{-4} + a^{-6} +2 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^8-2 q^6+4 q^4-2 q^2-1+5 q^{-2} -6 q^{-4} +5 q^{-6} -3 q^{-8} + q^{-10} +3 q^{-12} -4 q^{-14} +5 q^{-16} -3 q^{-18} - q^{-20} +2 q^{-22} - q^{-24} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{46}-3 q^{44}+8 q^{42}-16 q^{40}+23 q^{38}-28 q^{36}+20 q^{34}+10 q^{32}-62 q^{30}+137 q^{28}-208 q^{26}+233 q^{24}-176 q^{22}-2 q^{20}+294 q^{18}-608 q^{16}+833 q^{14}-812 q^{12}+451 q^{10}+199 q^8-958 q^6+1532 q^4-1632 q^2+1151-188 q^{-2} -916 q^{-4} +1717 q^{-6} -1870 q^{-8} +1282 q^{-10} -198 q^{-12} -912 q^{-14} +1540 q^{-16} -1415 q^{-18} +595 q^{-20} +565 q^{-22} -1513 q^{-24} +1825 q^{-26} -1319 q^{-28} +142 q^{-30} +1226 q^{-32} -2263 q^{-34} +2534 q^{-36} -1901 q^{-38} +590 q^{-40} +955 q^{-42} -2166 q^{-44} +2616 q^{-46} -2157 q^{-48} +971 q^{-50} +450 q^{-52} -1558 q^{-54} +1919 q^{-56} -1425 q^{-58} +370 q^{-60} +777 q^{-62} -1465 q^{-64} +1405 q^{-66} -655 q^{-68} -462 q^{-70} +1422 q^{-72} -1815 q^{-74} +1496 q^{-76} -606 q^{-78} -462 q^{-80} +1302 q^{-82} -1636 q^{-84} +1413 q^{-86} -801 q^{-88} +61 q^{-90} +535 q^{-92} -847 q^{-94} +837 q^{-96} -597 q^{-98} +284 q^{-100} +7 q^{-102} -189 q^{-104} +249 q^{-106} -230 q^{-108} +153 q^{-110} -72 q^{-112} +14 q^{-114} +22 q^{-116} -31 q^{-118} +28 q^{-120} -20 q^{-122} +10 q^{-124} -4 q^{-126} + q^{-128} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a125"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+6 t^3-19 t^2+38 t-47+38 t^{-1} -19 t^{-2} +6 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-2 z^6-3 z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 175, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^8+5 q^7-12 q^6+19 q^5-25 q^4+29 q^3-28 q^2+24 q-17+10 q^{-1} -4 q^{-2} + q^{-3} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -5 z^6 a^{-2} +2 z^6 a^{-4} +z^6-11 z^4 a^{-2} +6 z^4 a^{-4} -z^4 a^{-6} +3 z^4-10 z^2 a^{-2} +7 z^2 a^{-4} -z^2 a^{-6} +4 z^2-3 a^{-2} +3 a^{-4} - a^{-6} +2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 3 z^{10} a^{-2} +3 z^{10} a^{-4} +8 z^9 a^{-1} +19 z^9 a^{-3} +11 z^9 a^{-5} +18 z^8 a^{-2} +26 z^8 a^{-4} +16 z^8 a^{-6} +8 z^8+4 a z^7-9 z^7 a^{-1} -27 z^7 a^{-3} -2 z^7 a^{-5} +12 z^7 a^{-7} +a^2 z^6-55 z^6 a^{-2} -66 z^6 a^{-4} -24 z^6 a^{-6} +5 z^6 a^{-8} -17 z^6-8 a z^5-5 z^5 a^{-1} -3 z^5 a^{-3} -22 z^5 a^{-5} -15 z^5 a^{-7} +z^5 a^{-9} -2 a^2 z^4+50 z^4 a^{-2} +49 z^4 a^{-4} +12 z^4 a^{-6} -3 z^4 a^{-8} +14 z^4+5 a z^3+8 z^3 a^{-1} +12 z^3 a^{-3} +14 z^3 a^{-5} +5 z^3 a^{-7} +a^2 z^2-20 z^2 a^{-2} -16 z^2 a^{-4} -4 z^2 a^{-6} -7 z^2-a z-2 z a^{-1} -2 z a^{-3} -2 z a^{-5} -z a^{-7} +3 a^{-2} +3 a^{-4} + a^{-6} +2 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a297,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a125"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+6 t^3-19 t^2+38 t-47+38 t^{-1} -19 t^{-2} +6 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ -q^8+5 q^7-12 q^6+19 q^5-25 q^4+29 q^3-28 q^2+24 q-17+10 q^{-1} -4 q^{-2} + q^{-3} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a297,} |
Vassiliev invariants
| V2 and V3: | (0, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a125. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



