K11a134

From Knot Atlas
Jump to navigationJump to search

K11a133.gif

K11a133

K11a135.gif

K11a135

K11a134.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a134 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X16,5,17,6 X14,8,15,7 X2,10,3,9 X20,12,21,11 X8,14,9,13 X18,15,19,16 X6,17,7,18 X22,20,1,19 X12,22,13,21
Gauss code 1, -5, 2, -1, 3, -9, 4, -7, 5, -2, 6, -11, 7, -4, 8, -3, 9, -8, 10, -6, 11, -10
Dowker-Thistlethwaite code 4 10 16 14 2 20 8 18 6 22 12
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
A Morse Link Presentation K11a134 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{1,2\} }[/math]
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a134/ThurstonBennequinNumber
Hyperbolic Volume 15.4841
A-Polynomial See Data:K11a134/A-polynomial

[edit Notes for K11a134's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -2

[edit Notes for K11a134's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 3 t^3-13 t^2+28 t-35+28 t^{-1} -13 t^{-2} +3 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 3 z^6+5 z^4+3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 123, 2 }
Jones polynomial [math]\displaystyle{ q^9-4 q^8+8 q^7-13 q^6+17 q^5-20 q^4+20 q^3-16 q^2+13 q-7+3 q^{-1} - q^{-2} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-2} +2 z^6 a^{-4} +2 z^4 a^{-2} +7 z^4 a^{-4} -3 z^4 a^{-6} -z^4+2 z^2 a^{-2} +9 z^2 a^{-4} -7 z^2 a^{-6} +z^2 a^{-8} -2 z^2+2 a^{-2} +3 a^{-4} -4 a^{-6} + a^{-8} -1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-4} +z^{10} a^{-6} +4 z^9 a^{-3} +8 z^9 a^{-5} +4 z^9 a^{-7} +6 z^8 a^{-2} +14 z^8 a^{-4} +14 z^8 a^{-6} +6 z^8 a^{-8} +5 z^7 a^{-1} +3 z^7 a^{-3} -4 z^7 a^{-5} +2 z^7 a^{-7} +4 z^7 a^{-9} -7 z^6 a^{-2} -35 z^6 a^{-4} -39 z^6 a^{-6} -13 z^6 a^{-8} +z^6 a^{-10} +3 z^6+a z^5-6 z^5 a^{-1} -14 z^5 a^{-3} -22 z^5 a^{-5} -25 z^5 a^{-7} -10 z^5 a^{-9} +4 z^4 a^{-2} +35 z^4 a^{-4} +34 z^4 a^{-6} +6 z^4 a^{-8} -2 z^4 a^{-10} -5 z^4-2 a z^3+z^3 a^{-1} +12 z^3 a^{-3} +27 z^3 a^{-5} +25 z^3 a^{-7} +7 z^3 a^{-9} -z^2 a^{-2} -17 z^2 a^{-4} -15 z^2 a^{-6} -z^2 a^{-8} +z^2 a^{-10} +3 z^2+a z+z a^{-1} -2 z a^{-3} -8 z a^{-5} -8 z a^{-7} -2 z a^{-9} -2 a^{-2} +3 a^{-4} +4 a^{-6} + a^{-8} -1 }[/math]
The A2 invariant Data:K11a134/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a134/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (3, 3)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 24 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 78 }[/math] [math]\displaystyle{ -6 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 272 }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 936 }[/math] [math]\displaystyle{ -72 }[/math] [math]\displaystyle{ \frac{10591}{10} }[/math] [math]\displaystyle{ \frac{1578}{5} }[/math] [math]\displaystyle{ -\frac{2378}{15} }[/math] [math]\displaystyle{ \frac{97}{6} }[/math] [math]\displaystyle{ -\frac{769}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a134. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-3-2-1012345678χ
19           11
17          3 -3
15         51 4
13        83  -5
11       95   4
9      118    -3
7     99     0
5    711      4
3   69       -3
1  28        6
-1 15         -4
-3 2          2
-51           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=1 }[/math] [math]\displaystyle{ i=3 }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a133.gif

K11a133

K11a135.gif

K11a135