K11a170
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,4,11,3 X18,5,19,6 X20,8,21,7 X2,10,3,9 X16,11,17,12 X6,14,7,13 X8,15,9,16 X22,17,1,18 X14,19,15,20 X12,22,13,21 |
| Gauss code | 1, -5, 2, -1, 3, -7, 4, -8, 5, -2, 6, -11, 7, -10, 8, -6, 9, -3, 10, -4, 11, -9 |
| Dowker-Thistlethwaite code | 4 10 18 20 2 16 6 8 22 14 12 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-6 t^3+20 t^2-40 t+51-40 t^{-1} +20 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+2 z^6+4 z^4+2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 185, 0 } |
| Jones polynomial | [math]\displaystyle{ q^6-6 q^5+13 q^4-20 q^3+27 q^2-30 q+30-25 q^{-1} +18 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +5 z^6-3 a^2 z^4-5 z^4 a^{-2} +z^4 a^{-4} +11 z^4-4 a^2 z^2-3 z^2 a^{-2} +9 z^2-a^2+ a^{-2} - a^{-4} +2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 4 z^{10} a^{-2} +4 z^{10}+11 a z^9+23 z^9 a^{-1} +12 z^9 a^{-3} +13 a^2 z^8+22 z^8 a^{-2} +13 z^8 a^{-4} +22 z^8+9 a^3 z^7-7 a z^7-37 z^7 a^{-1} -15 z^7 a^{-3} +6 z^7 a^{-5} +4 a^4 z^6-20 a^2 z^6-65 z^6 a^{-2} -26 z^6 a^{-4} +z^6 a^{-6} -62 z^6+a^5 z^5-12 a^3 z^5-11 a z^5+3 z^5 a^{-1} -7 z^5 a^{-3} -8 z^5 a^{-5} -4 a^4 z^4+17 a^2 z^4+41 z^4 a^{-2} +11 z^4 a^{-4} +51 z^4-a^5 z^3+8 a^3 z^3+15 a z^3+10 z^3 a^{-1} +4 z^3 a^{-3} +a^4 z^2-7 a^2 z^2-6 z^2 a^{-2} +2 z^2 a^{-4} -16 z^2-2 a^3 z-4 a z-2 z a^{-1} +2 z a^{-3} +2 z a^{-5} +a^2- a^{-2} - a^{-4} +2 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{14}+2 q^{12}-4 q^{10}+3 q^8+2 q^6-5 q^4+6 q^2-5+4 q^{-2} + q^{-4} - q^{-6} +6 q^{-8} -5 q^{-10} +2 q^{-12} -3 q^{-16} + q^{-18} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{80}-3 q^{78}+7 q^{76}-13 q^{74}+17 q^{72}-19 q^{70}+12 q^{68}+10 q^{66}-43 q^{64}+89 q^{62}-133 q^{60}+152 q^{58}-131 q^{56}+45 q^{54}+111 q^{52}-308 q^{50}+508 q^{48}-630 q^{46}+572 q^{44}-291 q^{42}-223 q^{40}+849 q^{38}-1362 q^{36}+1527 q^{34}-1168 q^{32}+303 q^{30}+809 q^{28}-1756 q^{26}+2130 q^{24}-1712 q^{22}+614 q^{20}+723 q^{18}-1724 q^{16}+1928 q^{14}-1209 q^{12}-84 q^{10}+1365 q^8-2013 q^6+1679 q^4-493 q^2-1082+2370 q^{-2} -2805 q^{-4} +2187 q^{-6} -705 q^{-8} -1085 q^{-10} +2534 q^{-12} -3117 q^{-14} +2634 q^{-16} -1294 q^{-18} -417 q^{-20} +1865 q^{-22} -2504 q^{-24} +2151 q^{-26} -954 q^{-28} -523 q^{-30} +1645 q^{-32} -1927 q^{-34} +1239 q^{-36} +66 q^{-38} -1391 q^{-40} +2141 q^{-42} -1960 q^{-44} +941 q^{-46} +475 q^{-48} -1691 q^{-50} +2230 q^{-52} -1946 q^{-54} +1022 q^{-56} +97 q^{-58} -1000 q^{-60} +1400 q^{-62} -1274 q^{-64} +806 q^{-66} -224 q^{-68} -236 q^{-70} +457 q^{-72} -468 q^{-74} +331 q^{-76} -160 q^{-78} +29 q^{-80} +50 q^{-82} -69 q^{-84} +57 q^{-86} -35 q^{-88} +15 q^{-90} -5 q^{-92} + q^{-94} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a170"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-6 t^3+20 t^2-40 t+51-40 t^{-1} +20 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+2 z^6+4 z^4+2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 185, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^6-6 q^5+13 q^4-20 q^3+27 q^2-30 q+30-25 q^{-1} +18 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +5 z^6-3 a^2 z^4-5 z^4 a^{-2} +z^4 a^{-4} +11 z^4-4 a^2 z^2-3 z^2 a^{-2} +9 z^2-a^2+ a^{-2} - a^{-4} +2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 4 z^{10} a^{-2} +4 z^{10}+11 a z^9+23 z^9 a^{-1} +12 z^9 a^{-3} +13 a^2 z^8+22 z^8 a^{-2} +13 z^8 a^{-4} +22 z^8+9 a^3 z^7-7 a z^7-37 z^7 a^{-1} -15 z^7 a^{-3} +6 z^7 a^{-5} +4 a^4 z^6-20 a^2 z^6-65 z^6 a^{-2} -26 z^6 a^{-4} +z^6 a^{-6} -62 z^6+a^5 z^5-12 a^3 z^5-11 a z^5+3 z^5 a^{-1} -7 z^5 a^{-3} -8 z^5 a^{-5} -4 a^4 z^4+17 a^2 z^4+41 z^4 a^{-2} +11 z^4 a^{-4} +51 z^4-a^5 z^3+8 a^3 z^3+15 a z^3+10 z^3 a^{-1} +4 z^3 a^{-3} +a^4 z^2-7 a^2 z^2-6 z^2 a^{-2} +2 z^2 a^{-4} -16 z^2-2 a^3 z-4 a z-2 z a^{-1} +2 z a^{-3} +2 z a^{-5} +a^2- a^{-2} - a^{-4} +2 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a170"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-6 t^3+20 t^2-40 t+51-40 t^{-1} +20 t^{-2} -6 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ q^6-6 q^5+13 q^4-20 q^3+27 q^2-30 q+30-25 q^{-1} +18 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a170. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



