K11a186

From Knot Atlas
Jump to navigationJump to search

K11a185.gif

K11a185

K11a187.gif

K11a187

K11a186.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a186 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X12,4,13,3 X14,6,15,5 X16,8,17,7 X20,10,21,9 X2,12,3,11 X10,14,11,13 X6,16,7,15 X22,18,1,17 X8,20,9,19 X18,22,19,21
Gauss code 1, -6, 2, -1, 3, -8, 4, -10, 5, -7, 6, -2, 7, -3, 8, -4, 9, -11, 10, -5, 11, -9
Dowker-Thistlethwaite code 4 12 14 16 20 2 10 6 22 8 18
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation K11a186 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -6

[edit Notes for K11a186's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 4 t^3-12 t^2+20 t-23+20 t^{-1} -12 t^{-2} +4 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 4 z^6+12 z^4+8 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 95, 6 }
Jones polynomial [math]\displaystyle{ -q^{14}+3 q^{13}-6 q^{12}+10 q^{11}-14 q^{10}+15 q^9-15 q^8+13 q^7-9 q^6+6 q^5-2 q^4+q^3 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-6} +2 z^6 a^{-8} +z^6 a^{-10} +4 z^4 a^{-6} +7 z^4 a^{-8} +2 z^4 a^{-10} -z^4 a^{-12} +5 z^2 a^{-6} +6 z^2 a^{-8} -z^2 a^{-10} -2 z^2 a^{-12} +2 a^{-6} + a^{-8} -2 a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-10} +z^{10} a^{-12} +2 z^9 a^{-9} +5 z^9 a^{-11} +3 z^9 a^{-13} +3 z^8 a^{-8} +3 z^8 a^{-10} +4 z^8 a^{-12} +4 z^8 a^{-14} +2 z^7 a^{-7} +z^7 a^{-9} -7 z^7 a^{-11} -2 z^7 a^{-13} +4 z^7 a^{-15} +z^6 a^{-6} -7 z^6 a^{-8} -6 z^6 a^{-10} -4 z^6 a^{-12} -3 z^6 a^{-14} +3 z^6 a^{-16} -5 z^5 a^{-7} -11 z^5 a^{-9} +4 z^5 a^{-11} +4 z^5 a^{-13} -5 z^5 a^{-15} +z^5 a^{-17} -4 z^4 a^{-6} +5 z^4 a^{-8} +2 z^4 a^{-10} -3 z^4 a^{-12} -2 z^4 a^{-14} -6 z^4 a^{-16} +2 z^3 a^{-7} +10 z^3 a^{-9} -6 z^3 a^{-13} -2 z^3 a^{-17} +5 z^2 a^{-6} -3 z^2 a^{-8} -3 z^2 a^{-10} +4 z^2 a^{-12} +2 z^2 a^{-14} +3 z^2 a^{-16} +z a^{-7} -3 z a^{-9} -2 z a^{-11} +2 z a^{-13} +z a^{-15} +z a^{-17} -2 a^{-6} + a^{-8} +2 a^{-10} }[/math]
The A2 invariant Data:K11a186/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a186/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a241,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a241,}

Vassiliev invariants

V2 and V3: (8, 22)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 176 }[/math] [math]\displaystyle{ 512 }[/math] [math]\displaystyle{ \frac{3664}{3} }[/math] [math]\displaystyle{ \frac{464}{3} }[/math] [math]\displaystyle{ 5632 }[/math] [math]\displaystyle{ \frac{28448}{3} }[/math] [math]\displaystyle{ \frac{4736}{3} }[/math] [math]\displaystyle{ 1008 }[/math] [math]\displaystyle{ \frac{16384}{3} }[/math] [math]\displaystyle{ 15488 }[/math] [math]\displaystyle{ \frac{117248}{3} }[/math] [math]\displaystyle{ \frac{14848}{3} }[/math] [math]\displaystyle{ \frac{1139884}{15} }[/math] [math]\displaystyle{ \frac{23728}{5} }[/math] [math]\displaystyle{ \frac{1095376}{45} }[/math] [math]\displaystyle{ \frac{4148}{9} }[/math] [math]\displaystyle{ \frac{43084}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]6 is the signature of K11a186. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
29           1-1
27          2 2
25         41 -3
23        62  4
21       84   -4
19      76    1
17     88     0
15    57      -2
13   48       4
11  25        -3
9  4         4
712          -1
51           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=5 }[/math] [math]\displaystyle{ i=7 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=10 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=11 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a185.gif

K11a185

K11a187.gif

K11a187