K11a194
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X12,3,13,4 X14,6,15,5 X20,7,21,8 X16,9,17,10 X18,11,19,12 X2,13,3,14 X22,16,1,15 X10,17,11,18 X6,19,7,20 X8,21,9,22 |
| Gauss code | 1, -7, 2, -1, 3, -10, 4, -11, 5, -9, 6, -2, 7, -3, 8, -5, 9, -6, 10, -4, 11, -8 |
| Dowker-Thistlethwaite code | 4 12 14 20 16 18 2 22 10 6 8 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | |
| Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+3 z^6+2 z^4+z^2+1} |
| 2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
| Determinant and Signature | { 93, -4 } |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q+3-5 q^{-1} +10 q^{-2} -12 q^{-3} +14 q^{-4} -15 q^{-5} +13 q^{-6} -10 q^{-7} +6 q^{-8} -3 q^{-9} + q^{-10} } |
| HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8+3 z^2 a^8+2 a^8-2 z^6 a^6-9 z^4 a^6-13 z^2 a^6-6 a^6+z^8 a^4+6 z^6 a^4+14 z^4 a^4+15 z^2 a^4+5 a^4-z^6 a^2-4 z^4 a^2-4 z^2 a^2} |
| Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{12}-z^2 a^{12}+3 z^5 a^{11}-3 z^3 a^{11}+5 z^6 a^{10}-5 z^4 a^{10}+z^2 a^{10}+7 z^7 a^9-12 z^5 a^9+11 z^3 a^9-4 z a^9+7 z^8 a^8-14 z^6 a^8+13 z^4 a^8-5 z^2 a^8+2 a^8+4 z^9 a^7-z^7 a^7-17 z^5 a^7+23 z^3 a^7-8 z a^7+z^{10} a^6+10 z^8 a^6-39 z^6 a^6+46 z^4 a^6-25 z^2 a^6+6 a^6+7 z^9 a^5-18 z^7 a^5+7 z^5 a^5+5 z^3 a^5-3 z a^5+z^{10} a^4+6 z^8 a^4-33 z^6 a^4+45 z^4 a^4-27 z^2 a^4+5 a^4+3 z^9 a^3-9 z^7 a^3+5 z^5 a^3+z a^3+3 z^8 a^2-13 z^6 a^2+18 z^4 a^2-9 z^2 a^2+z^7 a-4 z^5 a+4 z^3 a} |
| The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{30}+q^{24}-3 q^{22}+q^{20}-2 q^{18}-q^{16}+q^{14}-3 q^{12}+4 q^{10}+3 q^6+2 q^4-q^2+1- q^{-2} } |
| The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{162}-2 q^{160}+4 q^{158}-6 q^{156}+5 q^{154}-3 q^{152}-2 q^{150}+10 q^{148}-17 q^{146}+24 q^{144}-27 q^{142}+19 q^{140}-7 q^{138}-13 q^{136}+36 q^{134}-55 q^{132}+68 q^{130}-65 q^{128}+41 q^{126}+q^{124}-47 q^{122}+96 q^{120}-124 q^{118}+125 q^{116}-90 q^{114}+17 q^{112}+68 q^{110}-135 q^{108}+168 q^{106}-138 q^{104}+66 q^{102}+28 q^{100}-112 q^{98}+143 q^{96}-110 q^{94}+17 q^{92}+82 q^{90}-147 q^{88}+138 q^{86}-54 q^{84}-71 q^{82}+185 q^{80}-241 q^{78}+202 q^{76}-92 q^{74}-74 q^{72}+215 q^{70}-286 q^{68}+263 q^{66}-150 q^{64}-5 q^{62}+143 q^{60}-221 q^{58}+215 q^{56}-136 q^{54}+6 q^{52}+107 q^{50}-157 q^{48}+135 q^{46}-36 q^{44}-76 q^{42}+165 q^{40}-176 q^{38}+112 q^{36}-q^{34}-123 q^{32}+211 q^{30}-210 q^{28}+146 q^{26}-34 q^{24}-75 q^{22}+150 q^{20}-163 q^{18}+126 q^{16}-62 q^{14}-6 q^{12}+53 q^{10}-70 q^8+61 q^6-37 q^4+16 q^2+3-13 q^{-2} +11 q^{-4} -10 q^{-6} +5 q^{-8} -2 q^{-10} + q^{-12} } |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a194"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^8+3 z^6+2 z^4+z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 93, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -q+3-5 q^{-1} +10 q^{-2} -12 q^{-3} +14 q^{-4} -15 q^{-5} +13 q^{-6} -10 q^{-7} +6 q^{-8} -3 q^{-9} + q^{-10} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^8+3 z^2 a^8+2 a^8-2 z^6 a^6-9 z^4 a^6-13 z^2 a^6-6 a^6+z^8 a^4+6 z^6 a^4+14 z^4 a^4+15 z^2 a^4+5 a^4-z^6 a^2-4 z^4 a^2-4 z^2 a^2} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^4 a^{12}-z^2 a^{12}+3 z^5 a^{11}-3 z^3 a^{11}+5 z^6 a^{10}-5 z^4 a^{10}+z^2 a^{10}+7 z^7 a^9-12 z^5 a^9+11 z^3 a^9-4 z a^9+7 z^8 a^8-14 z^6 a^8+13 z^4 a^8-5 z^2 a^8+2 a^8+4 z^9 a^7-z^7 a^7-17 z^5 a^7+23 z^3 a^7-8 z a^7+z^{10} a^6+10 z^8 a^6-39 z^6 a^6+46 z^4 a^6-25 z^2 a^6+6 a^6+7 z^9 a^5-18 z^7 a^5+7 z^5 a^5+5 z^3 a^5-3 z a^5+z^{10} a^4+6 z^8 a^4-33 z^6 a^4+45 z^4 a^4-27 z^2 a^4+5 a^4+3 z^9 a^3-9 z^7 a^3+5 z^5 a^3+z a^3+3 z^8 a^2-13 z^6 a^2+18 z^4 a^2-9 z^2 a^2+z^7 a-4 z^5 a+4 z^3 a} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a106, K11a346,}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a194"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ , } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a106, K11a346,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -4 is the signature of K11a194. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



