K11a206
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X12,3,13,4 X16,5,17,6 X18,7,19,8 X20,9,21,10 X14,12,15,11 X2,13,3,14 X22,15,1,16 X6,17,7,18 X8,19,9,20 X10,21,11,22 |
| Gauss code | 1, -7, 2, -1, 3, -9, 4, -10, 5, -11, 6, -2, 7, -6, 8, -3, 9, -4, 10, -5, 11, -8 |
| Dowker-Thistlethwaite code | 4 12 16 18 20 14 2 22 6 8 10 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+5 t^3-7 t^2+7 t-7+7 t^{-1} -7 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-3 z^6+3 z^4+8 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 47, -6 } |
| Jones polynomial | [math]\displaystyle{ q^{-1} -2 q^{-2} +3 q^{-3} -4 q^{-4} +6 q^{-5} -6 q^{-6} +7 q^{-7} -6 q^{-8} +5 q^{-9} -4 q^{-10} +2 q^{-11} - q^{-12} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^4 a^{10}-4 z^2 a^{10}-3 a^{10}+2 z^6 a^8+10 z^4 a^8+13 z^2 a^8+4 a^8-z^8 a^6-6 z^6 a^6-11 z^4 a^6-7 z^2 a^6-a^6+z^6 a^4+5 z^4 a^4+6 z^2 a^4+a^4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^3 a^{15}-z a^{15}+2 z^4 a^{14}-z^2 a^{14}+3 z^5 a^{13}-3 z^3 a^{13}+2 z a^{13}+3 z^6 a^{12}-3 z^4 a^{12}+z^2 a^{12}+3 z^7 a^{11}-5 z^5 a^{11}+2 z^3 a^{11}-z a^{11}+3 z^8 a^{10}-9 z^6 a^{10}+11 z^4 a^{10}-11 z^2 a^{10}+3 a^{10}+2 z^9 a^9-5 z^7 a^9-z^5 a^9+5 z^3 a^9-3 z a^9+z^{10} a^8-z^8 a^8-10 z^6 a^8+19 z^4 a^8-13 z^2 a^8+4 a^8+4 z^9 a^7-20 z^7 a^7+29 z^5 a^7-14 z^3 a^7+2 z a^7+z^{10} a^6-3 z^8 a^6-4 z^6 a^6+14 z^4 a^6-7 z^2 a^6+a^6+2 z^9 a^5-12 z^7 a^5+22 z^5 a^5-13 z^3 a^5+z a^5+z^8 a^4-6 z^6 a^4+11 z^4 a^4-7 z^2 a^4+a^4 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{36}-q^{34}-q^{30}-q^{26}+q^{24}+q^{22}+q^{20}+3 q^{18}+q^{14}-q^{12}+q^4 }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{196}-q^{194}+2 q^{192}-2 q^{190}+q^{188}-2 q^{184}+5 q^{182}-6 q^{180}+6 q^{178}-5 q^{176}+q^{174}+3 q^{172}-7 q^{170}+11 q^{168}-10 q^{166}+7 q^{164}-3 q^{162}-3 q^{160}+6 q^{158}-9 q^{156}+9 q^{154}-8 q^{152}+3 q^{150}+q^{148}-6 q^{146}+6 q^{144}-5 q^{142}+2 q^{140}-2 q^{138}-q^{136}-q^{134}-q^{130}+q^{126}-4 q^{124}+3 q^{122}-4 q^{120}+q^{118}-3 q^{112}+6 q^{110}-4 q^{108}-2 q^{106}+9 q^{104}-14 q^{102}+16 q^{100}-9 q^{98}+3 q^{96}+8 q^{94}-11 q^{92}+19 q^{90}-13 q^{88}+9 q^{86}-q^{84}-3 q^{82}+9 q^{80}-7 q^{78}+7 q^{76}-q^{74}-2 q^{72}+4 q^{70}-5 q^{68}-q^{66}+8 q^{64}-14 q^{62}+13 q^{60}-8 q^{58}-2 q^{56}+13 q^{54}-20 q^{52}+19 q^{50}-14 q^{48}+4 q^{46}+6 q^{44}-13 q^{42}+15 q^{40}-10 q^{38}+7 q^{36}-2 q^{32}+3 q^{30}-4 q^{28}+3 q^{26}-q^{24}+q^{22} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a206"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+5 t^3-7 t^2+7 t-7+7 t^{-1} -7 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-3 z^6+3 z^4+8 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 47, -6 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^{-1} -2 q^{-2} +3 q^{-3} -4 q^{-4} +6 q^{-5} -6 q^{-6} +7 q^{-7} -6 q^{-8} +5 q^{-9} -4 q^{-10} +2 q^{-11} - q^{-12} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^4 a^{10}-4 z^2 a^{10}-3 a^{10}+2 z^6 a^8+10 z^4 a^8+13 z^2 a^8+4 a^8-z^8 a^6-6 z^6 a^6-11 z^4 a^6-7 z^2 a^6-a^6+z^6 a^4+5 z^4 a^4+6 z^2 a^4+a^4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^3 a^{15}-z a^{15}+2 z^4 a^{14}-z^2 a^{14}+3 z^5 a^{13}-3 z^3 a^{13}+2 z a^{13}+3 z^6 a^{12}-3 z^4 a^{12}+z^2 a^{12}+3 z^7 a^{11}-5 z^5 a^{11}+2 z^3 a^{11}-z a^{11}+3 z^8 a^{10}-9 z^6 a^{10}+11 z^4 a^{10}-11 z^2 a^{10}+3 a^{10}+2 z^9 a^9-5 z^7 a^9-z^5 a^9+5 z^3 a^9-3 z a^9+z^{10} a^8-z^8 a^8-10 z^6 a^8+19 z^4 a^8-13 z^2 a^8+4 a^8+4 z^9 a^7-20 z^7 a^7+29 z^5 a^7-14 z^3 a^7+2 z a^7+z^{10} a^6-3 z^8 a^6-4 z^6 a^6+14 z^4 a^6-7 z^2 a^6+a^6+2 z^9 a^5-12 z^7 a^5+22 z^5 a^5-13 z^3 a^5+z a^5+z^8 a^4-6 z^6 a^4+11 z^4 a^4-7 z^2 a^4+a^4 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a206"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+5 t^3-7 t^2+7 t-7+7 t^{-1} -7 t^{-2} +5 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ q^{-1} -2 q^{-2} +3 q^{-3} -4 q^{-4} +6 q^{-5} -6 q^{-6} +7 q^{-7} -6 q^{-8} +5 q^{-9} -4 q^{-10} +2 q^{-11} - q^{-12} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (8, -23) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-6 is the signature of K11a206. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



