K11a210
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X12,3,13,4 X16,6,17,5 X20,7,21,8 X18,9,19,10 X14,12,15,11 X2,13,3,14 X10,16,11,15 X22,18,1,17 X8,19,9,20 X6,21,7,22 |
| Gauss code | 1, -7, 2, -1, 3, -11, 4, -10, 5, -8, 6, -2, 7, -6, 8, -3, 9, -5, 10, -4, 11, -9 |
| Dowker-Thistlethwaite code | 4 12 16 20 18 14 2 10 22 8 6 |
| A Braid Representative | |||||||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ 4 t^2-18 t+29-18 t^{-1} +4 t^{-2} }[/math] |
| Conway polynomial | [math]\displaystyle{ 4 z^4-2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 73, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^5+3 q^4-5 q^3+8 q^2-10 q+12-11 q^{-1} +9 q^{-2} -7 q^{-3} +4 q^{-4} -2 q^{-5} + q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ a^6-2 z^2 a^4-a^4+z^4 a^2-z^2 a^2-a^2+2 z^4+2 z^2+2+z^4 a^{-2} -z^2 a^{-4} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^2 z^{10}+z^{10}+2 a^3 z^9+5 a z^9+3 z^9 a^{-1} +2 a^4 z^8+4 z^8 a^{-2} +2 z^8+2 a^5 z^7-5 a^3 z^7-19 a z^7-8 z^7 a^{-1} +4 z^7 a^{-3} +a^6 z^6-4 a^4 z^6-6 a^2 z^6-10 z^6 a^{-2} +3 z^6 a^{-4} -14 z^6-7 a^5 z^5+4 a^3 z^5+32 a z^5+11 z^5 a^{-1} -9 z^5 a^{-3} +z^5 a^{-5} -4 a^6 z^4-3 a^4 z^4+11 a^2 z^4+10 z^4 a^{-2} -7 z^4 a^{-4} +27 z^4+6 a^5 z^3-3 a^3 z^3-20 a z^3-5 z^3 a^{-1} +4 z^3 a^{-3} -2 z^3 a^{-5} +4 a^6 z^2+5 a^4 z^2-7 a^2 z^2-4 z^2 a^{-2} +2 z^2 a^{-4} -14 z^2-2 a^5 z+4 a z+2 z a^{-1} -a^6-a^4+a^2+2 }[/math] |
| The A2 invariant | Data:K11a210/QuantumInvariant/A2/1,0 |
| The G2 invariant | Data:K11a210/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a210"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ 4 t^2-18 t+29-18 t^{-1} +4 t^{-2} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ 4 z^4-2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 73, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^5+3 q^4-5 q^3+8 q^2-10 q+12-11 q^{-1} +9 q^{-2} -7 q^{-3} +4 q^{-4} -2 q^{-5} + q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ a^6-2 z^2 a^4-a^4+z^4 a^2-z^2 a^2-a^2+2 z^4+2 z^2+2+z^4 a^{-2} -z^2 a^{-4} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^2 z^{10}+z^{10}+2 a^3 z^9+5 a z^9+3 z^9 a^{-1} +2 a^4 z^8+4 z^8 a^{-2} +2 z^8+2 a^5 z^7-5 a^3 z^7-19 a z^7-8 z^7 a^{-1} +4 z^7 a^{-3} +a^6 z^6-4 a^4 z^6-6 a^2 z^6-10 z^6 a^{-2} +3 z^6 a^{-4} -14 z^6-7 a^5 z^5+4 a^3 z^5+32 a z^5+11 z^5 a^{-1} -9 z^5 a^{-3} +z^5 a^{-5} -4 a^6 z^4-3 a^4 z^4+11 a^2 z^4+10 z^4 a^{-2} -7 z^4 a^{-4} +27 z^4+6 a^5 z^3-3 a^3 z^3-20 a z^3-5 z^3 a^{-1} +4 z^3 a^{-3} -2 z^3 a^{-5} +4 a^6 z^2+5 a^4 z^2-7 a^2 z^2-4 z^2 a^{-2} +2 z^2 a^{-4} -14 z^2-2 a^5 z+4 a z+2 z a^{-1} -a^6-a^4+a^2+2 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a210"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ 4 t^2-18 t+29-18 t^{-1} +4 t^{-2} }[/math], [math]\displaystyle{ -q^5+3 q^4-5 q^3+8 q^2-10 q+12-11 q^{-1} +9 q^{-2} -7 q^{-3} +4 q^{-4} -2 q^{-5} + q^{-6} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (-2, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a210. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



