K11a22
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8493 X12,5,13,6 X2837 X18,10,19,9 X14,11,15,12 X6,13,7,14 X20,16,21,15 X22,18,1,17 X10,20,11,19 X16,22,17,21 |
| Gauss code | 1, -4, 2, -1, 3, -7, 4, -2, 5, -10, 6, -3, 7, -6, 8, -11, 9, -5, 10, -8, 11, -9 |
| Dowker-Thistlethwaite code | 4 8 12 2 18 14 6 20 22 10 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-5 t^3+13 t^2-20 t+23-20 t^{-1} +13 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+3 z^6+3 z^4+3 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 101, 4 } |
| Jones polynomial | [math]\displaystyle{ q^{10}-3 q^9+6 q^8-11 q^7+14 q^6-16 q^5+16 q^4-13 q^3+11 q^2-6 q+3- q^{-1} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8 a^{-4} -z^6 a^{-2} +6 z^6 a^{-4} -2 z^6 a^{-6} -4 z^4 a^{-2} +15 z^4 a^{-4} -9 z^4 a^{-6} +z^4 a^{-8} -5 z^2 a^{-2} +19 z^2 a^{-4} -14 z^2 a^{-6} +3 z^2 a^{-8} -2 a^{-2} +9 a^{-4} -8 a^{-6} +2 a^{-8} }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-4} +z^{10} a^{-6} +3 z^9 a^{-3} +7 z^9 a^{-5} +4 z^9 a^{-7} +3 z^8 a^{-2} +8 z^8 a^{-4} +12 z^8 a^{-6} +7 z^8 a^{-8} +z^7 a^{-1} -6 z^7 a^{-3} -11 z^7 a^{-5} +3 z^7 a^{-7} +7 z^7 a^{-9} -12 z^6 a^{-2} -38 z^6 a^{-4} -41 z^6 a^{-6} -10 z^6 a^{-8} +5 z^6 a^{-10} -4 z^5 a^{-1} -7 z^5 a^{-3} -17 z^5 a^{-5} -26 z^5 a^{-7} -9 z^5 a^{-9} +3 z^5 a^{-11} +16 z^4 a^{-2} +48 z^4 a^{-4} +43 z^4 a^{-6} +6 z^4 a^{-8} -4 z^4 a^{-10} +z^4 a^{-12} +5 z^3 a^{-1} +17 z^3 a^{-3} +32 z^3 a^{-5} +29 z^3 a^{-7} +6 z^3 a^{-9} -3 z^3 a^{-11} -9 z^2 a^{-2} -29 z^2 a^{-4} -25 z^2 a^{-6} -3 z^2 a^{-8} +z^2 a^{-10} -z^2 a^{-12} -2 z a^{-1} -7 z a^{-3} -14 z a^{-5} -11 z a^{-7} -z a^{-9} +z a^{-11} +2 a^{-2} +9 a^{-4} +8 a^{-6} +2 a^{-8} }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^2+1-2 q^{-2} + q^{-4} +2 q^{-6} +6 q^{-10} - q^{-12} +3 q^{-14} - q^{-16} -3 q^{-18} -4 q^{-22} + q^{-24} + q^{-30} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{12}-2 q^{10}+6 q^8-11 q^6+14 q^4-16 q^2+5+17 q^{-2} -49 q^{-4} +82 q^{-6} -97 q^{-8} +72 q^{-10} -7 q^{-12} -91 q^{-14} +185 q^{-16} -233 q^{-18} +204 q^{-20} -95 q^{-22} -72 q^{-24} +227 q^{-26} -309 q^{-28} +285 q^{-30} -147 q^{-32} -33 q^{-34} +193 q^{-36} -259 q^{-38} +215 q^{-40} -72 q^{-42} -87 q^{-44} +211 q^{-46} -220 q^{-48} +128 q^{-50} +45 q^{-52} -215 q^{-54} +321 q^{-56} -304 q^{-58} +173 q^{-60} +35 q^{-62} -247 q^{-64} +384 q^{-66} -395 q^{-68} +272 q^{-70} -61 q^{-72} -166 q^{-74} +309 q^{-76} -336 q^{-78} +227 q^{-80} -51 q^{-82} -122 q^{-84} +211 q^{-86} -194 q^{-88} +76 q^{-90} +69 q^{-92} -183 q^{-94} +208 q^{-96} -141 q^{-98} +7 q^{-100} +127 q^{-102} -216 q^{-104} +231 q^{-106} -168 q^{-108} +63 q^{-110} +49 q^{-112} -134 q^{-114} +170 q^{-116} -158 q^{-118} +115 q^{-120} -46 q^{-122} -13 q^{-124} +59 q^{-126} -83 q^{-128} +81 q^{-130} -64 q^{-132} +40 q^{-134} -11 q^{-136} -11 q^{-138} +25 q^{-140} -30 q^{-142} +26 q^{-144} -18 q^{-146} +10 q^{-148} -2 q^{-150} -4 q^{-152} +5 q^{-154} -6 q^{-156} +4 q^{-158} -2 q^{-160} + q^{-162} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a22"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-5 t^3+13 t^2-20 t+23-20 t^{-1} +13 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+3 z^6+3 z^4+3 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 101, 4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^{10}-3 q^9+6 q^8-11 q^7+14 q^6-16 q^5+16 q^4-13 q^3+11 q^2-6 q+3- q^{-1} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8 a^{-4} -z^6 a^{-2} +6 z^6 a^{-4} -2 z^6 a^{-6} -4 z^4 a^{-2} +15 z^4 a^{-4} -9 z^4 a^{-6} +z^4 a^{-8} -5 z^2 a^{-2} +19 z^2 a^{-4} -14 z^2 a^{-6} +3 z^2 a^{-8} -2 a^{-2} +9 a^{-4} -8 a^{-6} +2 a^{-8} }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-4} +z^{10} a^{-6} +3 z^9 a^{-3} +7 z^9 a^{-5} +4 z^9 a^{-7} +3 z^8 a^{-2} +8 z^8 a^{-4} +12 z^8 a^{-6} +7 z^8 a^{-8} +z^7 a^{-1} -6 z^7 a^{-3} -11 z^7 a^{-5} +3 z^7 a^{-7} +7 z^7 a^{-9} -12 z^6 a^{-2} -38 z^6 a^{-4} -41 z^6 a^{-6} -10 z^6 a^{-8} +5 z^6 a^{-10} -4 z^5 a^{-1} -7 z^5 a^{-3} -17 z^5 a^{-5} -26 z^5 a^{-7} -9 z^5 a^{-9} +3 z^5 a^{-11} +16 z^4 a^{-2} +48 z^4 a^{-4} +43 z^4 a^{-6} +6 z^4 a^{-8} -4 z^4 a^{-10} +z^4 a^{-12} +5 z^3 a^{-1} +17 z^3 a^{-3} +32 z^3 a^{-5} +29 z^3 a^{-7} +6 z^3 a^{-9} -3 z^3 a^{-11} -9 z^2 a^{-2} -29 z^2 a^{-4} -25 z^2 a^{-6} -3 z^2 a^{-8} +z^2 a^{-10} -z^2 a^{-12} -2 z a^{-1} -7 z a^{-3} -14 z a^{-5} -11 z a^{-7} -z a^{-9} +z a^{-11} +2 a^{-2} +9 a^{-4} +8 a^{-6} +2 a^{-8} }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a22"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-5 t^3+13 t^2-20 t+23-20 t^{-1} +13 t^{-2} -5 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ q^{10}-3 q^9+6 q^8-11 q^7+14 q^6-16 q^5+16 q^4-13 q^3+11 q^2-6 q+3- q^{-1} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (3, 3) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a22. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



