K11a225

From Knot Atlas
Jump to navigationJump to search

K11a224.gif

K11a224

K11a226.gif

K11a226

K11a225.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a225 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X12,3,13,4 X18,5,19,6 X20,7,21,8 X16,10,17,9 X14,12,15,11 X2,13,3,14 X10,16,11,15 X22,17,1,18 X6,19,7,20 X8,21,9,22
Gauss code 1, -7, 2, -1, 3, -10, 4, -11, 5, -8, 6, -2, 7, -6, 8, -5, 9, -3, 10, -4, 11, -9
Dowker-Thistlethwaite code 4 12 18 20 16 14 2 10 22 6 8
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a225 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant 4

[edit Notes for K11a225's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^3+8 t^2-11 t+11-11 t^{-1} +8 t^{-2} -2 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^6-4 z^4+3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 53, -4 }
Jones polynomial [math]\displaystyle{ q^2-2 q+3-5 q^{-1} +7 q^{-2} -7 q^{-3} +8 q^{-4} -7 q^{-5} +6 q^{-6} -4 q^{-7} +2 q^{-8} - q^{-9} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^2 a^8-2 a^8+2 z^4 a^6+6 z^2 a^6+3 a^6-z^6 a^4-3 z^4 a^4-z^2 a^4-z^6 a^2-4 z^4 a^2-4 z^2 a^2-a^2+z^4+3 z^2+1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^3 a^{11}-z a^{11}+2 z^4 a^{10}-z^2 a^{10}+3 z^5 a^9-2 z^3 a^9+z a^9+4 z^6 a^8-6 z^4 a^8+5 z^2 a^8-2 a^8+4 z^7 a^7-7 z^5 a^7+2 z^3 a^7+z a^7+3 z^8 a^6-4 z^6 a^6-7 z^4 a^6+9 z^2 a^6-3 a^6+2 z^9 a^5-3 z^7 a^5-5 z^5 a^5+4 z^3 a^5+z^{10} a^4-z^8 a^4-5 z^6 a^4+3 z^4 a^4+z^2 a^4+4 z^9 a^3-19 z^7 a^3+28 z^5 a^3-16 z^3 a^3+3 z a^3+z^{10} a^2-3 z^8 a^2-3 z^6 a^2+13 z^4 a^2-8 z^2 a^2+a^2+2 z^9 a-12 z^7 a+23 z^5 a-15 z^3 a+2 z a+z^8-6 z^6+11 z^4-6 z^2+1 }[/math]
The A2 invariant Data:K11a225/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a225/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (3, -8)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 12 }[/math] [math]\displaystyle{ -64 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 318 }[/math] [math]\displaystyle{ 66 }[/math] [math]\displaystyle{ -768 }[/math] [math]\displaystyle{ -\frac{5248}{3} }[/math] [math]\displaystyle{ -\frac{736}{3} }[/math] [math]\displaystyle{ -384 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 2048 }[/math] [math]\displaystyle{ 3816 }[/math] [math]\displaystyle{ 792 }[/math] [math]\displaystyle{ \frac{98991}{10} }[/math] [math]\displaystyle{ -\frac{3822}{5} }[/math] [math]\displaystyle{ \frac{77182}{15} }[/math] [math]\displaystyle{ \frac{1201}{6} }[/math] [math]\displaystyle{ \frac{7631}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11a225. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-7-6-5-4-3-2-101234χ
5           11
3          1 -1
1         21 1
-1        31  -2
-3       42   2
-5      44    0
-7     43     1
-9    34      1
-11   34       -1
-13  13        2
-15 13         -2
-17 1          1
-191           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-5 }[/math] [math]\displaystyle{ i=-3 }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a224.gif

K11a224

K11a226.gif

K11a226