K11a233
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X14,4,15,3 X10,5,11,6 X20,8,21,7 X22,9,1,10 X18,11,19,12 X2,14,3,13 X8,15,9,16 X6,18,7,17 X12,19,13,20 X16,22,17,21 |
| Gauss code | 1, -7, 2, -1, 3, -9, 4, -8, 5, -3, 6, -10, 7, -2, 8, -11, 9, -6, 10, -4, 11, -5 |
| Dowker-Thistlethwaite code | 4 14 10 20 22 18 2 8 6 12 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-6 t^3+19 t^2-37 t+47-37 t^{-1} +19 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+2 z^6+3 z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 173, 0 } |
| Jones polynomial | [math]\displaystyle{ q^6-5 q^5+11 q^4-18 q^3+25 q^2-28 q+28-24 q^{-1} +18 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +5 z^6-3 a^2 z^4-6 z^4 a^{-2} +z^4 a^{-4} +11 z^4-4 a^2 z^2-6 z^2 a^{-2} +z^2 a^{-4} +10 z^2-a^2- a^{-2} +3 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 3 z^{10} a^{-2} +3 z^{10}+10 a z^9+19 z^9 a^{-1} +9 z^9 a^{-3} +13 a^2 z^8+21 z^8 a^{-2} +10 z^8 a^{-4} +24 z^8+9 a^3 z^7-4 a z^7-26 z^7 a^{-1} -8 z^7 a^{-3} +5 z^7 a^{-5} +4 a^4 z^6-21 a^2 z^6-62 z^6 a^{-2} -21 z^6 a^{-4} +z^6 a^{-6} -65 z^6+a^5 z^5-12 a^3 z^5-16 a z^5-8 z^5 a^{-1} -14 z^5 a^{-3} -9 z^5 a^{-5} -4 a^4 z^4+18 a^2 z^4+48 z^4 a^{-2} +13 z^4 a^{-4} -z^4 a^{-6} +56 z^4-a^5 z^3+8 a^3 z^3+17 a z^3+17 z^3 a^{-1} +13 z^3 a^{-3} +4 z^3 a^{-5} +a^4 z^2-8 a^2 z^2-14 z^2 a^{-2} -2 z^2 a^{-4} -21 z^2-2 a^3 z-5 a z-5 z a^{-1} -2 z a^{-3} +a^2+ a^{-2} +3 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{14}+2 q^{12}-4 q^{10}+3 q^8+2 q^6-4 q^4+6 q^2-5+4 q^{-2} - q^{-6} +5 q^{-8} -5 q^{-10} +2 q^{-12} -2 q^{-16} + q^{-18} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{80}-3 q^{78}+7 q^{76}-13 q^{74}+17 q^{72}-19 q^{70}+12 q^{68}+10 q^{66}-43 q^{64}+89 q^{62}-134 q^{60}+156 q^{58}-137 q^{56}+47 q^{54}+124 q^{52}-341 q^{50}+547 q^{48}-650 q^{46}+539 q^{44}-191 q^{42}-364 q^{40}+970 q^{38}-1370 q^{36}+1362 q^{34}-847 q^{32}-58 q^{30}+1029 q^{28}-1692 q^{26}+1741 q^{24}-1115 q^{22}+53 q^{20}+995 q^{18}-1553 q^{16}+1370 q^{14}-502 q^{12}-631 q^{10}+1504 q^8-1703 q^6+1078 q^4+119 q^2-1412+2279 q^{-2} -2327 q^{-4} +1526 q^{-6} -137 q^{-8} -1329 q^{-10} +2335 q^{-12} -2541 q^{-14} +1875 q^{-16} -610 q^{-18} -769 q^{-20} +1750 q^{-22} -1955 q^{-24} +1364 q^{-26} -237 q^{-28} -899 q^{-30} +1524 q^{-32} -1392 q^{-34} +552 q^{-36} +590 q^{-38} -1509 q^{-40} +1818 q^{-42} -1366 q^{-44} +367 q^{-46} +751 q^{-48} -1552 q^{-50} +1747 q^{-52} -1340 q^{-54} +554 q^{-56} +263 q^{-58} -838 q^{-60} +1029 q^{-62} -862 q^{-64} +498 q^{-66} -99 q^{-68} -190 q^{-70} +312 q^{-72} -306 q^{-74} +213 q^{-76} -101 q^{-78} +20 q^{-80} +30 q^{-82} -43 q^{-84} +36 q^{-86} -24 q^{-88} +11 q^{-90} -4 q^{-92} + q^{-94} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a233"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-6 t^3+19 t^2-37 t+47-37 t^{-1} +19 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+2 z^6+3 z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 173, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^6-5 q^5+11 q^4-18 q^3+25 q^2-28 q+28-24 q^{-1} +18 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +5 z^6-3 a^2 z^4-6 z^4 a^{-2} +z^4 a^{-4} +11 z^4-4 a^2 z^2-6 z^2 a^{-2} +z^2 a^{-4} +10 z^2-a^2- a^{-2} +3 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 3 z^{10} a^{-2} +3 z^{10}+10 a z^9+19 z^9 a^{-1} +9 z^9 a^{-3} +13 a^2 z^8+21 z^8 a^{-2} +10 z^8 a^{-4} +24 z^8+9 a^3 z^7-4 a z^7-26 z^7 a^{-1} -8 z^7 a^{-3} +5 z^7 a^{-5} +4 a^4 z^6-21 a^2 z^6-62 z^6 a^{-2} -21 z^6 a^{-4} +z^6 a^{-6} -65 z^6+a^5 z^5-12 a^3 z^5-16 a z^5-8 z^5 a^{-1} -14 z^5 a^{-3} -9 z^5 a^{-5} -4 a^4 z^4+18 a^2 z^4+48 z^4 a^{-2} +13 z^4 a^{-4} -z^4 a^{-6} +56 z^4-a^5 z^3+8 a^3 z^3+17 a z^3+17 z^3 a^{-1} +13 z^3 a^{-3} +4 z^3 a^{-5} +a^4 z^2-8 a^2 z^2-14 z^2 a^{-2} -2 z^2 a^{-4} -21 z^2-2 a^3 z-5 a z-5 z a^{-1} -2 z a^{-3} +a^2+ a^{-2} +3 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a233"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-6 t^3+19 t^2-37 t+47-37 t^{-1} +19 t^{-2} -6 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ q^6-5 q^5+11 q^4-18 q^3+25 q^2-28 q+28-24 q^{-1} +18 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a233. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



