K11a242

From Knot Atlas
Jump to navigationJump to search

K11a241.gif

K11a241

K11a243.gif

K11a243

K11a242.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a242 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X14,4,15,3 X18,6,19,5 X20,8,21,7 X22,10,1,9 X16,12,17,11 X2,14,3,13 X12,16,13,15 X10,18,11,17 X6,20,7,19 X8,22,9,21
Gauss code 1, -7, 2, -1, 3, -10, 4, -11, 5, -9, 6, -8, 7, -2, 8, -6, 9, -3, 10, -4, 11, -5
Dowker-Thistlethwaite code 4 14 18 20 22 16 2 12 10 6 8
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a242 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -6

[edit Notes for K11a242's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 3 t^3-7 t^2+9 t-9+9 t^{-1} -7 t^{-2} +3 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 3 z^6+11 z^4+8 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 47, 6 }
Jones polynomial [math]\displaystyle{ -q^{14}+2 q^{13}-3 q^{12}+5 q^{11}-7 q^{10}+7 q^9-7 q^8+6 q^7-4 q^6+3 q^5-q^4+q^3 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-6} +z^6 a^{-8} +z^6 a^{-10} +5 z^4 a^{-6} +3 z^4 a^{-8} +4 z^4 a^{-10} -z^4 a^{-12} +7 z^2 a^{-6} +4 z^2 a^{-10} -3 z^2 a^{-12} +3 a^{-6} -2 a^{-8} + a^{-10} - a^{-12} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-10} +z^{10} a^{-12} +z^9 a^{-9} +3 z^9 a^{-11} +2 z^9 a^{-13} +z^8 a^{-8} -5 z^8 a^{-10} -4 z^8 a^{-12} +2 z^8 a^{-14} +z^7 a^{-7} -3 z^7 a^{-9} -15 z^7 a^{-11} -9 z^7 a^{-13} +2 z^7 a^{-15} +z^6 a^{-6} -2 z^6 a^{-8} +12 z^6 a^{-10} +7 z^6 a^{-12} -6 z^6 a^{-14} +2 z^6 a^{-16} -3 z^5 a^{-7} +3 z^5 a^{-9} +29 z^5 a^{-11} +17 z^5 a^{-13} -5 z^5 a^{-15} +z^5 a^{-17} -5 z^4 a^{-6} -3 z^4 a^{-8} -13 z^4 a^{-10} -3 z^4 a^{-12} +6 z^4 a^{-14} -6 z^4 a^{-16} -3 z^3 a^{-9} -18 z^3 a^{-11} -10 z^3 a^{-13} +2 z^3 a^{-15} -3 z^3 a^{-17} +7 z^2 a^{-6} +5 z^2 a^{-8} +5 z^2 a^{-10} +3 z^2 a^{-12} -z^2 a^{-14} +3 z^2 a^{-16} +2 z a^{-7} +z a^{-9} +2 z a^{-11} +2 z a^{-13} +z a^{-17} -3 a^{-6} -2 a^{-8} - a^{-10} - a^{-12} }[/math]
The A2 invariant Data:K11a242/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a242/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11n93,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (8, 23)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 184 }[/math] [math]\displaystyle{ 512 }[/math] [math]\displaystyle{ \frac{3904}{3} }[/math] [math]\displaystyle{ \frac{488}{3} }[/math] [math]\displaystyle{ 5888 }[/math] [math]\displaystyle{ \frac{30928}{3} }[/math] [math]\displaystyle{ \frac{5056}{3} }[/math] [math]\displaystyle{ 1144 }[/math] [math]\displaystyle{ \frac{16384}{3} }[/math] [math]\displaystyle{ 16928 }[/math] [math]\displaystyle{ \frac{124928}{3} }[/math] [math]\displaystyle{ \frac{15616}{3} }[/math] [math]\displaystyle{ \frac{1263124}{15} }[/math] [math]\displaystyle{ \frac{65624}{15} }[/math] [math]\displaystyle{ \frac{1257256}{45} }[/math] [math]\displaystyle{ \frac{6284}{9} }[/math] [math]\displaystyle{ \frac{49924}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]6 is the signature of K11a242. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
29           1-1
27          1 1
25         21 -1
23        31  2
21       42   -2
19      33    0
17     44     0
15    23      -1
13   24       2
11  12        -1
9  2         2
711          0
51           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=5 }[/math] [math]\displaystyle{ i=7 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=10 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=11 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a241.gif

K11a241

K11a243.gif

K11a243