K11a3
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
Planar diagram presentation | X4251 X8394 X10,6,11,5 X14,8,15,7 X2,9,3,10 X18,11,19,12 X6,14,7,13 X20,15,21,16 X22,17,1,18 X12,19,13,20 X16,21,17,22 |
Gauss code | 1, -5, 2, -1, 3, -7, 4, -2, 5, -3, 6, -10, 7, -4, 8, -11, 9, -6, 10, -8, 11, -9 |
Dowker-Thistlethwaite code | 4 8 10 14 2 18 6 20 22 12 16 |
A Braid Representative |
| ||||
A Morse Link Presentation | ![]() |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^4+5 t^3-13 t^2+24 t-29+24 t^{-1} -13 t^{-2} +5 t^{-3} - t^{-4} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8-3 z^6-3 z^4+z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 115, -2 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-3 q^2+7 q-12+16 q^{-1} -18 q^{-2} +19 q^{-3} -16 q^{-4} +12 q^{-5} -7 q^{-6} +3 q^{-7} - q^{-8} } |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^2 z^8+2 a^4 z^6-6 a^2 z^6+z^6-a^6 z^4+9 a^4 z^4-15 a^2 z^4+4 z^4-3 a^6 z^2+15 a^4 z^2-17 a^2 z^2+6 z^2-3 a^6+8 a^4-7 a^2+3} |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^4 z^{10}+a^2 z^{10}+4 a^5 z^9+8 a^3 z^9+4 a z^9+6 a^6 z^8+13 a^4 z^8+12 a^2 z^8+5 z^8+5 a^7 z^7+a^5 z^7-11 a^3 z^7-4 a z^7+3 z^7 a^{-1} +3 a^8 z^6-9 a^6 z^6-38 a^4 z^6-40 a^2 z^6+z^6 a^{-2} -13 z^6+a^9 z^5-7 a^7 z^5-11 a^5 z^5-2 a^3 z^5-7 a z^5-8 z^5 a^{-1} -5 a^8 z^4+9 a^6 z^4+48 a^4 z^4+49 a^2 z^4-3 z^4 a^{-2} +12 z^4-2 a^9 z^3+3 a^7 z^3+12 a^5 z^3+10 a^3 z^3+9 a z^3+6 z^3 a^{-1} +2 a^8 z^2-8 a^6 z^2-30 a^4 z^2-30 a^2 z^2+2 z^2 a^{-2} -8 z^2+a^9 z-a^7 z-4 a^5 z-4 a^3 z-4 a z-2 z a^{-1} +3 a^6+8 a^4+7 a^2+3} |
The A2 invariant | |
The G2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^{128}-2 q^{126}+5 q^{124}-8 q^{122}+9 q^{120}-8 q^{118}+q^{116}+13 q^{114}-29 q^{112}+47 q^{110}-59 q^{108}+53 q^{106}-30 q^{104}-20 q^{102}+87 q^{100}-150 q^{98}+191 q^{96}-186 q^{94}+112 q^{92}+17 q^{90}-181 q^{88}+324 q^{86}-389 q^{84}+334 q^{82}-167 q^{80}-81 q^{78}+315 q^{76}-446 q^{74}+423 q^{72}-237 q^{70}-30 q^{68}+264 q^{66}-367 q^{64}+285 q^{62}-53 q^{60}-216 q^{58}+409 q^{56}-407 q^{54}+208 q^{52}+130 q^{50}-455 q^{48}+647 q^{46}-610 q^{44}+353 q^{42}+36 q^{40}-415 q^{38}+658 q^{36}-671 q^{34}+468 q^{32}-122 q^{30}-234 q^{28}+454 q^{26}-482 q^{24}+308 q^{22}-27 q^{20}-243 q^{18}+372 q^{16}-315 q^{14}+91 q^{12}+196 q^{10}-420 q^8+474 q^6-340 q^4+65 q^2+227-431 q^{-2} +485 q^{-4} -368 q^{-6} +159 q^{-8} +69 q^{-10} -235 q^{-12} +294 q^{-14} -251 q^{-16} +153 q^{-18} -39 q^{-20} -45 q^{-22} +88 q^{-24} -92 q^{-26} +69 q^{-28} -36 q^{-30} +11 q^{-32} +6 q^{-34} -13 q^{-36} +11 q^{-38} -9 q^{-40} +5 q^{-42} -2 q^{-44} + q^{-46} } |
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a3"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^4+5 t^3-13 t^2+24 t-29+24 t^{-1} -13 t^{-2} +5 t^{-3} - t^{-4} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -z^8-3 z^6-3 z^4+z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 115, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-3 q^2+7 q-12+16 q^{-1} -18 q^{-2} +19 q^{-3} -16 q^{-4} +12 q^{-5} -7 q^{-6} +3 q^{-7} - q^{-8} } |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -a^2 z^8+2 a^4 z^6-6 a^2 z^6+z^6-a^6 z^4+9 a^4 z^4-15 a^2 z^4+4 z^4-3 a^6 z^2+15 a^4 z^2-17 a^2 z^2+6 z^2-3 a^6+8 a^4-7 a^2+3} |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle a^4 z^{10}+a^2 z^{10}+4 a^5 z^9+8 a^3 z^9+4 a z^9+6 a^6 z^8+13 a^4 z^8+12 a^2 z^8+5 z^8+5 a^7 z^7+a^5 z^7-11 a^3 z^7-4 a z^7+3 z^7 a^{-1} +3 a^8 z^6-9 a^6 z^6-38 a^4 z^6-40 a^2 z^6+z^6 a^{-2} -13 z^6+a^9 z^5-7 a^7 z^5-11 a^5 z^5-2 a^3 z^5-7 a z^5-8 z^5 a^{-1} -5 a^8 z^4+9 a^6 z^4+48 a^4 z^4+49 a^2 z^4-3 z^4 a^{-2} +12 z^4-2 a^9 z^3+3 a^7 z^3+12 a^5 z^3+10 a^3 z^3+9 a z^3+6 z^3 a^{-1} +2 a^8 z^2-8 a^6 z^2-30 a^4 z^2-30 a^2 z^2+2 z^2 a^{-2} -8 z^2+a^9 z-a^7 z-4 a^5 z-4 a^3 z-4 a z-2 z a^{-1} +3 a^6+8 a^4+7 a^2+3} |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {K11a51, K11a331,}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a3"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -t^4+5 t^3-13 t^2+24 t-29+24 t^{-1} -13 t^{-2} +5 t^{-3} - t^{-4} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^3-3 q^2+7 q-12+16 q^{-1} -18 q^{-2} +19 q^{-3} -16 q^{-4} +12 q^{-5} -7 q^{-6} +3 q^{-7} - q^{-8} } } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a51, K11a331,} |
Vassiliev invariants
V2 and V3: | (1, -4) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where -2 is the signature of K11a3. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|