K11a302
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X6271 X10,3,11,4 X18,5,19,6 X14,7,15,8 X20,10,21,9 X4,11,5,12 X22,13,1,14 X8,15,9,16 X12,18,13,17 X2,19,3,20 X16,21,17,22 |
| Gauss code | 1, -10, 2, -6, 3, -1, 4, -8, 5, -2, 6, -9, 7, -4, 8, -11, 9, -3, 10, -5, 11, -7 |
| Dowker-Thistlethwaite code | 6 10 18 14 20 4 22 8 12 2 16 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-7 t^3+20 t^2-33 t+39-33 t^{-1} +20 t^{-2} -7 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+z^6-2 z^4+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 161, -4 } |
| Jones polynomial | [math]\displaystyle{ -q+5-10 q^{-1} +17 q^{-2} -22 q^{-3} +26 q^{-4} -26 q^{-5} +22 q^{-6} -17 q^{-7} +10 q^{-8} -4 q^{-9} + q^{-10} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^4 a^8+2 z^2 a^8+a^8-2 z^6 a^6-6 z^4 a^6-5 z^2 a^6-2 a^6+z^8 a^4+4 z^6 a^4+5 z^4 a^4+2 z^2 a^4-z^6 a^2-2 z^4 a^2+z^2 a^2+2 a^2 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^4 a^{12}+4 z^5 a^{11}+10 z^6 a^{10}-7 z^4 a^{10}+3 z^2 a^{10}+17 z^7 a^9-24 z^5 a^9+14 z^3 a^9-3 z a^9+19 z^8 a^8-32 z^6 a^8+17 z^4 a^8-5 z^2 a^8+a^8+13 z^9 a^7-12 z^7 a^7-18 z^5 a^7+16 z^3 a^7-5 z a^7+4 z^{10} a^6+20 z^8 a^6-73 z^6 a^6+59 z^4 a^6-18 z^2 a^6+2 a^6+21 z^9 a^5-53 z^7 a^5+29 z^5 a^5-z a^5+4 z^{10} a^4+6 z^8 a^4-46 z^6 a^4+47 z^4 a^4-11 z^2 a^4+8 z^9 a^3-23 z^7 a^3+17 z^5 a^3-z^3 a^3+z a^3+5 z^8 a^2-15 z^6 a^2+13 z^4 a^2-z^2 a^2-2 a^2+z^7 a-2 z^5 a+z^3 a }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{30}-q^{28}+3 q^{24}-4 q^{22}+3 q^{20}-3 q^{18}-2 q^{16}+3 q^{14}-5 q^{12}+6 q^{10}-3 q^8+2 q^6+3 q^4-2 q^2+3- q^{-2} }[/math] |
| The G2 invariant | Data:K11a302/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a302"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-7 t^3+20 t^2-33 t+39-33 t^{-1} +20 t^{-2} -7 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+z^6-2 z^4+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 161, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q+5-10 q^{-1} +17 q^{-2} -22 q^{-3} +26 q^{-4} -26 q^{-5} +22 q^{-6} -17 q^{-7} +10 q^{-8} -4 q^{-9} + q^{-10} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^4 a^8+2 z^2 a^8+a^8-2 z^6 a^6-6 z^4 a^6-5 z^2 a^6-2 a^6+z^8 a^4+4 z^6 a^4+5 z^4 a^4+2 z^2 a^4-z^6 a^2-2 z^4 a^2+z^2 a^2+2 a^2 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^4 a^{12}+4 z^5 a^{11}+10 z^6 a^{10}-7 z^4 a^{10}+3 z^2 a^{10}+17 z^7 a^9-24 z^5 a^9+14 z^3 a^9-3 z a^9+19 z^8 a^8-32 z^6 a^8+17 z^4 a^8-5 z^2 a^8+a^8+13 z^9 a^7-12 z^7 a^7-18 z^5 a^7+16 z^3 a^7-5 z a^7+4 z^{10} a^6+20 z^8 a^6-73 z^6 a^6+59 z^4 a^6-18 z^2 a^6+2 a^6+21 z^9 a^5-53 z^7 a^5+29 z^5 a^5-z a^5+4 z^{10} a^4+6 z^8 a^4-46 z^6 a^4+47 z^4 a^4-11 z^2 a^4+8 z^9 a^3-23 z^7 a^3+17 z^5 a^3-z^3 a^3+z a^3+5 z^8 a^2-15 z^6 a^2+13 z^4 a^2-z^2 a^2-2 a^2+z^7 a-2 z^5 a+z^3 a }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a302"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-7 t^3+20 t^2-33 t+39-33 t^{-1} +20 t^{-2} -7 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ -q+5-10 q^{-1} +17 q^{-2} -22 q^{-3} +26 q^{-4} -26 q^{-5} +22 q^{-6} -17 q^{-7} +10 q^{-8} -4 q^{-9} + q^{-10} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (0, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11a302. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



