K11a304

From Knot Atlas
Jump to navigationJump to search

K11a303.gif

K11a303

K11a305.gif

K11a305

K11a304.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a304 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X10,4,11,3 X20,6,21,5 X14,8,15,7 X2,10,3,9 X18,11,19,12 X8,14,9,13 X22,16,1,15 X12,17,13,18 X4,20,5,19 X16,22,17,21
Gauss code 1, -5, 2, -10, 3, -1, 4, -7, 5, -2, 6, -9, 7, -4, 8, -11, 9, -6, 10, -3, 11, -8
Dowker-Thistlethwaite code 6 10 20 14 2 18 8 22 12 4 16
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a304 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{2,3\} }[/math]
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a304/ThurstonBennequinNumber
Hyperbolic Volume 16.2483
A-Polynomial See Data:K11a304/A-polynomial

[edit Notes for K11a304's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11a304's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -3 t^3+14 t^2-26 t+31-26 t^{-1} +14 t^{-2} -3 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ -3 z^6-4 z^4+3 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 117, 4 }
Jones polynomial [math]\displaystyle{ -q^{11}+3 q^{10}-7 q^9+12 q^8-16 q^7+19 q^6-19 q^5+16 q^4-12 q^3+8 q^2-3 q+1 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ -z^6 a^{-4} -2 z^6 a^{-6} +z^4 a^{-2} -z^4 a^{-4} -7 z^4 a^{-6} +3 z^4 a^{-8} +2 z^2 a^{-2} +3 z^2 a^{-4} -9 z^2 a^{-6} +8 z^2 a^{-8} -z^2 a^{-10} + a^{-2} +2 a^{-4} -5 a^{-6} +5 a^{-8} -2 a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 2 z^{10} a^{-6} +2 z^{10} a^{-8} +5 z^9 a^{-5} +11 z^9 a^{-7} +6 z^9 a^{-9} +5 z^8 a^{-4} +7 z^8 a^{-6} +9 z^8 a^{-8} +7 z^8 a^{-10} +3 z^7 a^{-3} -9 z^7 a^{-5} -28 z^7 a^{-7} -11 z^7 a^{-9} +5 z^7 a^{-11} +z^6 a^{-2} -11 z^6 a^{-4} -33 z^6 a^{-6} -39 z^6 a^{-8} -15 z^6 a^{-10} +3 z^6 a^{-12} -7 z^5 a^{-3} +2 z^5 a^{-5} +25 z^5 a^{-7} +8 z^5 a^{-9} -7 z^5 a^{-11} +z^5 a^{-13} -3 z^4 a^{-2} +6 z^4 a^{-4} +44 z^4 a^{-6} +57 z^4 a^{-8} +17 z^4 a^{-10} -5 z^4 a^{-12} +3 z^3 a^{-3} -z^3 a^{-5} -4 z^3 a^{-7} +3 z^3 a^{-9} +z^3 a^{-11} -2 z^3 a^{-13} +3 z^2 a^{-2} -6 z^2 a^{-4} -26 z^2 a^{-6} -29 z^2 a^{-8} -11 z^2 a^{-10} +z^2 a^{-12} -2 z a^{-9} -z a^{-11} +z a^{-13} - a^{-2} +2 a^{-4} +5 a^{-6} +5 a^{-8} +2 a^{-10} }[/math]
The A2 invariant Data:K11a304/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a304/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (3, 8)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 12 }[/math] [math]\displaystyle{ 64 }[/math] [math]\displaystyle{ 72 }[/math] [math]\displaystyle{ 366 }[/math] [math]\displaystyle{ 66 }[/math] [math]\displaystyle{ 768 }[/math] [math]\displaystyle{ \frac{6208}{3} }[/math] [math]\displaystyle{ \frac{1120}{3} }[/math] [math]\displaystyle{ 320 }[/math] [math]\displaystyle{ 288 }[/math] [math]\displaystyle{ 2048 }[/math] [math]\displaystyle{ 4392 }[/math] [math]\displaystyle{ 792 }[/math] [math]\displaystyle{ \frac{119391}{10} }[/math] [math]\displaystyle{ \frac{898}{5} }[/math] [math]\displaystyle{ \frac{75502}{15} }[/math] [math]\displaystyle{ \frac{577}{6} }[/math] [math]\displaystyle{ \frac{6271}{10} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a304. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-2-10123456789χ
23           1-1
21          2 2
19         51 -4
17        72  5
15       95   -4
13      107    3
11     99     0
9    710      -3
7   59       4
5  37        -4
3 16         5
1 2          -2
-11           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a303.gif

K11a303

K11a305.gif

K11a305