K11a315
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X6271 X12,4,13,3 X16,5,17,6 X18,8,19,7 X22,10,1,9 X4,12,5,11 X20,13,21,14 X10,15,11,16 X2,17,3,18 X8,20,9,19 X14,21,15,22 |
| Gauss code | 1, -9, 2, -6, 3, -1, 4, -10, 5, -8, 6, -2, 7, -11, 8, -3, 9, -4, 10, -7, 11, -5 |
| Dowker-Thistlethwaite code | 6 12 16 18 22 4 20 10 2 8 14 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-6 t^3+18 t^2-33 t+41-33 t^{-1} +18 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+2 z^6+2 z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 157, 0 } |
| Jones polynomial | [math]\displaystyle{ q^6-4 q^5+9 q^4-16 q^3+22 q^2-25 q+26-22 q^{-1} +17 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +5 z^6-3 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +11 z^4-4 a^2 z^2-9 z^2 a^{-2} +2 z^2 a^{-4} +12 z^2-2 a^2-4 a^{-2} + a^{-4} +6 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 3 z^{10} a^{-2} +3 z^{10}+10 a z^9+17 z^9 a^{-1} +7 z^9 a^{-3} +13 a^2 z^8+12 z^8 a^{-2} +7 z^8 a^{-4} +18 z^8+9 a^3 z^7-11 a z^7-32 z^7 a^{-1} -8 z^7 a^{-3} +4 z^7 a^{-5} +4 a^4 z^6-25 a^2 z^6-41 z^6 a^{-2} -14 z^6 a^{-4} +z^6 a^{-6} -55 z^6+a^5 z^5-13 a^3 z^5-2 a z^5+15 z^5 a^{-1} -6 z^5 a^{-3} -9 z^5 a^{-5} -4 a^4 z^4+23 a^2 z^4+39 z^4 a^{-2} +8 z^4 a^{-4} -2 z^4 a^{-6} +56 z^4-a^5 z^3+7 a^3 z^3+9 a z^3+3 z^3 a^{-1} +8 z^3 a^{-3} +6 z^3 a^{-5} -11 a^2 z^2-19 z^2 a^{-2} -3 z^2 a^{-4} +z^2 a^{-6} -26 z^2-2 a^3 z-4 a z-4 z a^{-1} -3 z a^{-3} -z a^{-5} +2 a^2+4 a^{-2} + a^{-4} +6 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{14}+2 q^{12}-4 q^{10}+2 q^8+q^6-3 q^4+7 q^2-3+5 q^{-2} - q^{-4} -2 q^{-6} +3 q^{-8} -5 q^{-10} +2 q^{-12} - q^{-16} + q^{-18} }[/math] |
| The G2 invariant | Data:K11a315/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a315"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-6 t^3+18 t^2-33 t+41-33 t^{-1} +18 t^{-2} -6 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+2 z^6+2 z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 157, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^6-4 q^5+9 q^4-16 q^3+22 q^2-25 q+26-22 q^{-1} +17 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +5 z^6-3 a^2 z^4-7 z^4 a^{-2} +z^4 a^{-4} +11 z^4-4 a^2 z^2-9 z^2 a^{-2} +2 z^2 a^{-4} +12 z^2-2 a^2-4 a^{-2} + a^{-4} +6 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 3 z^{10} a^{-2} +3 z^{10}+10 a z^9+17 z^9 a^{-1} +7 z^9 a^{-3} +13 a^2 z^8+12 z^8 a^{-2} +7 z^8 a^{-4} +18 z^8+9 a^3 z^7-11 a z^7-32 z^7 a^{-1} -8 z^7 a^{-3} +4 z^7 a^{-5} +4 a^4 z^6-25 a^2 z^6-41 z^6 a^{-2} -14 z^6 a^{-4} +z^6 a^{-6} -55 z^6+a^5 z^5-13 a^3 z^5-2 a z^5+15 z^5 a^{-1} -6 z^5 a^{-3} -9 z^5 a^{-5} -4 a^4 z^4+23 a^2 z^4+39 z^4 a^{-2} +8 z^4 a^{-4} -2 z^4 a^{-6} +56 z^4-a^5 z^3+7 a^3 z^3+9 a z^3+3 z^3 a^{-1} +8 z^3 a^{-3} +6 z^3 a^{-5} -11 a^2 z^2-19 z^2 a^{-2} -3 z^2 a^{-4} +z^2 a^{-6} -26 z^2-2 a^3 z-4 a z-4 z a^{-1} -3 z a^{-3} -z a^{-5} +2 a^2+4 a^{-2} + a^{-4} +6 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11a24, K11a26,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a24, K11a26,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a315"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-6 t^3+18 t^2-33 t+41-33 t^{-1} +18 t^{-2} -6 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ q^6-4 q^5+9 q^4-16 q^3+22 q^2-25 q+26-22 q^{-1} +17 q^{-2} -10 q^{-3} +4 q^{-4} - q^{-5} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11a24, K11a26,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a24, K11a26,} |
Vassiliev invariants
| V2 and V3: | (1, -1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a315. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



