K11a340

From Knot Atlas
Jump to navigationJump to search

K11a339.gif

K11a339

K11a341.gif

K11a341

K11a340.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a340 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X14,4,15,3 X16,6,17,5 X20,8,21,7 X22,10,1,9 X18,12,19,11 X4,14,5,13 X2,16,3,15 X10,18,11,17 X12,20,13,19 X8,22,9,21
Gauss code 1, -8, 2, -7, 3, -1, 4, -11, 5, -9, 6, -10, 7, -2, 8, -3, 9, -6, 10, -4, 11, -5
Dowker-Thistlethwaite code 6 14 16 20 22 18 4 2 10 12 8
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation K11a340 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{3,4\} }[/math]
3-genus 3
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a340/ThurstonBennequinNumber
Hyperbolic Volume 12.9962
A-Polynomial See Data:K11a340/A-polynomial

[edit Notes for K11a340's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -6

[edit Notes for K11a340's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 4 t^3-11 t^2+18 t-21+18 t^{-1} -11 t^{-2} +4 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 4 z^6+13 z^4+10 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \left\{2,t^2+t+1\right\} }[/math]
Determinant and Signature { 87, 6 }
Jones polynomial [math]\displaystyle{ -q^{14}+3 q^{13}-6 q^{12}+9 q^{11}-13 q^{10}+14 q^9-13 q^8+12 q^7-8 q^6+5 q^5-2 q^4+q^3 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-6} +2 z^6 a^{-8} +z^6 a^{-10} +4 z^4 a^{-6} +8 z^4 a^{-8} +2 z^4 a^{-10} -z^4 a^{-12} +4 z^2 a^{-6} +10 z^2 a^{-8} -2 z^2 a^{-10} -2 z^2 a^{-12} +5 a^{-8} -4 a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-10} +z^{10} a^{-12} +2 z^9 a^{-9} +5 z^9 a^{-11} +3 z^9 a^{-13} +3 z^8 a^{-8} +2 z^8 a^{-10} +4 z^8 a^{-12} +5 z^8 a^{-14} +2 z^7 a^{-7} -2 z^7 a^{-9} -11 z^7 a^{-11} -2 z^7 a^{-13} +5 z^7 a^{-15} +z^6 a^{-6} -10 z^6 a^{-8} -9 z^6 a^{-10} -12 z^6 a^{-12} -11 z^6 a^{-14} +3 z^6 a^{-16} -6 z^5 a^{-7} -3 z^5 a^{-9} +10 z^5 a^{-11} -6 z^5 a^{-13} -12 z^5 a^{-15} +z^5 a^{-17} -4 z^4 a^{-6} +15 z^4 a^{-8} +16 z^4 a^{-10} +13 z^4 a^{-12} +10 z^4 a^{-14} -6 z^4 a^{-16} +4 z^3 a^{-7} +4 z^3 a^{-9} +12 z^3 a^{-13} +10 z^3 a^{-15} -2 z^3 a^{-17} +4 z^2 a^{-6} -15 z^2 a^{-8} -17 z^2 a^{-10} -2 z^2 a^{-12} -3 z^2 a^{-14} +z^2 a^{-16} -4 z a^{-9} -2 z a^{-11} -2 z a^{-13} -4 z a^{-15} +5 a^{-8} +4 a^{-10} }[/math]
The A2 invariant Data:K11a340/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a340/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (10, 30)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 40 }[/math] [math]\displaystyle{ 240 }[/math] [math]\displaystyle{ 800 }[/math] [math]\displaystyle{ \frac{5708}{3} }[/math] [math]\displaystyle{ \frac{868}{3} }[/math] [math]\displaystyle{ 9600 }[/math] [math]\displaystyle{ 16672 }[/math] [math]\displaystyle{ 2880 }[/math] [math]\displaystyle{ 2224 }[/math] [math]\displaystyle{ \frac{32000}{3} }[/math] [math]\displaystyle{ 28800 }[/math] [math]\displaystyle{ \frac{228320}{3} }[/math] [math]\displaystyle{ \frac{34720}{3} }[/math] [math]\displaystyle{ \frac{446911}{3} }[/math] [math]\displaystyle{ \frac{10804}{3} }[/math] [math]\displaystyle{ \frac{520588}{9} }[/math] [math]\displaystyle{ \frac{10117}{9} }[/math] [math]\displaystyle{ \frac{22687}{3} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]6 is the signature of K11a340. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
29           1-1
27          2 2
25         41 -3
23        52  3
21       84   -4
19      65    1
17     78     1
15    56      -1
13   37       4
11  25        -3
9  3         3
712          -1
51           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=5 }[/math] [math]\displaystyle{ i=7 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=10 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=11 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a339.gif

K11a339

K11a341.gif

K11a341