K11a351

From Knot Atlas
Jump to navigationJump to search

K11a350.gif

K11a350

K11a352.gif

K11a352

K11a351.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a351 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X18,4,19,3 X16,5,17,6 X14,8,15,7 X20,9,21,10 X4,12,5,11 X2,13,3,14 X22,16,1,15 X12,18,13,17 X8,19,9,20 X10,21,11,22
Gauss code 1, -7, 2, -6, 3, -1, 4, -10, 5, -11, 6, -9, 7, -4, 8, -3, 9, -2, 10, -5, 11, -8
Dowker-Thistlethwaite code 6 18 16 14 20 4 2 22 12 8 10
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart4.gifBraidPart4.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gif
A Morse Link Presentation K11a351 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant 0

[edit Notes for K11a351's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ t^4-7 t^3+20 t^2-34 t+41-34 t^{-1} +20 t^{-2} -7 t^{-3} + t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ z^8+z^6-2 z^4-z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 165, 0 }
Jones polynomial [math]\displaystyle{ q^6-4 q^5+9 q^4-16 q^3+23 q^2-26 q+27-24 q^{-1} +18 q^{-2} -11 q^{-3} +5 q^{-4} - q^{-5} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^8-a^2 z^6-2 z^6 a^{-2} +4 z^6-2 a^2 z^4-6 z^4 a^{-2} +z^4 a^{-4} +5 z^4-4 z^2 a^{-2} +2 z^2 a^{-4} +z^2+a^2+ a^{-2} -1 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ 4 z^{10} a^{-2} +4 z^{10}+11 a z^9+20 z^9 a^{-1} +9 z^9 a^{-3} +14 a^2 z^8+8 z^8 a^{-2} +8 z^8 a^{-4} +14 z^8+11 a^3 z^7-10 a z^7-45 z^7 a^{-1} -20 z^7 a^{-3} +4 z^7 a^{-5} +5 a^4 z^6-19 a^2 z^6-37 z^6 a^{-2} -20 z^6 a^{-4} +z^6 a^{-6} -40 z^6+a^5 z^5-14 a^3 z^5-3 a z^5+37 z^5 a^{-1} +16 z^5 a^{-3} -9 z^5 a^{-5} -4 a^4 z^4+4 a^2 z^4+38 z^4 a^{-2} +17 z^4 a^{-4} -2 z^4 a^{-6} +27 z^4+3 a^3 z^3-a z^3-13 z^3 a^{-1} -5 z^3 a^{-3} +4 z^3 a^{-5} +a^2 z^2-11 z^2 a^{-2} -6 z^2 a^{-4} -4 z^2+a^3 z+2 a z+2 z a^{-1} +z a^{-3} -a^2- a^{-2} -1 }[/math]
The A2 invariant [math]\displaystyle{ -q^{14}+3 q^{12}-3 q^{10}+3 q^8+q^6-4 q^4+5 q^2-6+4 q^{-2} - q^{-4} +5 q^{-8} -4 q^{-10} +2 q^{-12} - q^{-14} - q^{-16} + q^{-18} }[/math]
The G2 invariant Data:K11a351/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (-1, 0)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ -4 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{82}{3} }[/math] [math]\displaystyle{ \frac{62}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ 64 }[/math] [math]\displaystyle{ -64 }[/math] [math]\displaystyle{ -\frac{32}{3} }[/math] [math]\displaystyle{ 0 }[/math] [math]\displaystyle{ -\frac{328}{3} }[/math] [math]\displaystyle{ -\frac{248}{3} }[/math] [math]\displaystyle{ -\frac{2911}{30} }[/math] [math]\displaystyle{ \frac{1262}{15} }[/math] [math]\displaystyle{ -\frac{8462}{45} }[/math] [math]\displaystyle{ \frac{415}{18} }[/math] [math]\displaystyle{ -\frac{991}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a351. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-5-4-3-2-10123456χ
13           11
11          3 -3
9         61 5
7        103  -7
5       136   7
3      1310    -3
1     1413     1
-1    1114      3
-3   713       -6
-5  411        7
-7 17         -6
-9 4          4
-111           -1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-1 }[/math] [math]\displaystyle{ i=1 }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{11}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{11} }[/math] [math]\displaystyle{ {\mathbb Z}^{11} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}^{14}\oplus{\mathbb Z}_2^{13} }[/math] [math]\displaystyle{ {\mathbb Z}^{14} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{13}\oplus{\mathbb Z}_2^{13} }[/math] [math]\displaystyle{ {\mathbb Z}^{13} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{10}\oplus{\mathbb Z}_2^{13} }[/math] [math]\displaystyle{ {\mathbb Z}^{13} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{10} }[/math] [math]\displaystyle{ {\mathbb Z}^{10} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a350.gif

K11a350

K11a352.gif

K11a352