K11a355

From Knot Atlas
Jump to navigationJump to search

K11a354.gif

K11a354

K11a356.gif

K11a356

K11a355.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a355 at Knotilus!



Knot presentations

Planar diagram presentation X8291 X14,4,15,3 X16,6,17,5 X18,8,19,7 X20,10,21,9 X22,12,1,11 X2,14,3,13 X4,16,5,15 X6,18,7,17 X12,20,13,19 X10,22,11,21
Gauss code 1, -7, 2, -8, 3, -9, 4, -1, 5, -11, 6, -10, 7, -2, 8, -3, 9, -4, 10, -5, 11, -6
Dowker-Thistlethwaite code 8 14 16 18 20 22 2 4 6 12 10
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart1.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a355 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 4 }[/math]
Rasmussen s-Invariant -8

[edit Notes for K11a355's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 2 t^4-4 t^3+6 t^2-7 t+7-7 t^{-1} +6 t^{-2} -4 t^{-3} +2 t^{-4} }[/math]
Conway polynomial [math]\displaystyle{ 2 z^8+12 z^6+22 z^4+13 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 45, 8 }
Jones polynomial [math]\displaystyle{ -q^{15}+2 q^{14}-4 q^{13}+5 q^{12}-6 q^{11}+7 q^{10}-6 q^9+5 q^8-4 q^7+3 q^6-q^5+q^4 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^8 a^{-8} +z^8 a^{-10} +7 z^6 a^{-8} +6 z^6 a^{-10} -z^6 a^{-12} +16 z^4 a^{-8} +11 z^4 a^{-10} -5 z^4 a^{-12} +13 z^2 a^{-8} +7 z^2 a^{-10} -7 z^2 a^{-12} +2 a^{-8} +2 a^{-10} -3 a^{-12} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-10} +z^{10} a^{-12} +z^9 a^{-9} +3 z^9 a^{-11} +2 z^9 a^{-13} +z^8 a^{-8} -5 z^8 a^{-10} -3 z^8 a^{-12} +3 z^8 a^{-14} -5 z^7 a^{-9} -14 z^7 a^{-11} -6 z^7 a^{-13} +3 z^7 a^{-15} -7 z^6 a^{-8} +8 z^6 a^{-10} +3 z^6 a^{-12} -9 z^6 a^{-14} +3 z^6 a^{-16} +6 z^5 a^{-9} +18 z^5 a^{-11} +4 z^5 a^{-13} -5 z^5 a^{-15} +3 z^5 a^{-17} +16 z^4 a^{-8} -8 z^4 a^{-10} -9 z^4 a^{-12} +10 z^4 a^{-14} -3 z^4 a^{-16} +2 z^4 a^{-18} -8 z^3 a^{-11} -2 z^3 a^{-13} +2 z^3 a^{-15} -3 z^3 a^{-17} +z^3 a^{-19} -13 z^2 a^{-8} +7 z^2 a^{-10} +11 z^2 a^{-12} -7 z^2 a^{-14} +z^2 a^{-16} -z^2 a^{-18} -z a^{-9} +3 z a^{-11} -z a^{-15} +2 z a^{-17} -z a^{-19} +2 a^{-8} -2 a^{-10} -3 a^{-12} }[/math]
The A2 invariant [math]\displaystyle{ q^{-14} +2 q^{-18} + q^{-22} +2 q^{-28} +2 q^{-32} - q^{-34} - q^{-36} - q^{-38} - q^{-40} - q^{-44} }[/math]
The G2 invariant Data:K11a355/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (13, 45)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 52 }[/math] [math]\displaystyle{ 360 }[/math] [math]\displaystyle{ 1352 }[/math] [math]\displaystyle{ \frac{9782}{3} }[/math] [math]\displaystyle{ \frac{1474}{3} }[/math] [math]\displaystyle{ 18720 }[/math] [math]\displaystyle{ 32688 }[/math] [math]\displaystyle{ 5792 }[/math] [math]\displaystyle{ 4168 }[/math] [math]\displaystyle{ \frac{70304}{3} }[/math] [math]\displaystyle{ 64800 }[/math] [math]\displaystyle{ \frac{508664}{3} }[/math] [math]\displaystyle{ \frac{76648}{3} }[/math] [math]\displaystyle{ \frac{10027603}{30} }[/math] [math]\displaystyle{ \frac{174674}{15} }[/math] [math]\displaystyle{ \frac{5685806}{45} }[/math] [math]\displaystyle{ \frac{35117}{18} }[/math] [math]\displaystyle{ \frac{488563}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]8 is the signature of K11a355. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
31           1-1
29          1 1
27         31 -2
25        21  1
23       43   -1
21      32    1
19     34     1
17    23      -1
15   23       1
13  12        -1
11  2         2
911          0
71           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=7 }[/math] [math]\displaystyle{ i=9 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=10 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=11 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a354.gif

K11a354

K11a356.gif

K11a356