K11a360

From Knot Atlas
Jump to navigationJump to search

K11a359.gif

K11a359

K11a361.gif

K11a361

K11a360.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a360 at Knotilus!



Knot presentations

Planar diagram presentation X8291 X14,4,15,3 X16,6,17,5 X18,8,19,7 X22,10,1,9 X20,12,21,11 X6,14,7,13 X4,16,5,15 X2,18,3,17 X12,20,13,19 X10,22,11,21
Gauss code 1, -9, 2, -8, 3, -7, 4, -1, 5, -11, 6, -10, 7, -2, 8, -3, 9, -4, 10, -6, 11, -5
Dowker-Thistlethwaite code 8 14 16 18 22 20 6 4 2 12 10
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a360 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{2,3\} }[/math]
3-genus 2
Bridge index 2
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11a360/ThurstonBennequinNumber
Hyperbolic Volume 9.76849
A-Polynomial See Data:K11a360/A-polynomial

[edit Notes for K11a360's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11a360's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 6 t^2-14 t+17-14 t^{-1} +6 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 6 z^4+10 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 57, 4 }
Jones polynomial [math]\displaystyle{ -q^{13}+2 q^{12}-4 q^{11}+5 q^{10}-7 q^9+9 q^8-8 q^7+8 q^6-6 q^5+4 q^4-2 q^3+q^2 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^4 a^{-4} +2 z^4 a^{-6} +2 z^4 a^{-8} +z^4 a^{-10} +2 z^2 a^{-4} +4 z^2 a^{-6} +4 z^2 a^{-8} +z^2 a^{-10} -z^2 a^{-12} + a^{-6} +2 a^{-8} - a^{-10} - a^{-12} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-10} +z^{10} a^{-12} +2 z^9 a^{-9} +4 z^9 a^{-11} +2 z^9 a^{-13} +3 z^8 a^{-8} -z^8 a^{-10} -2 z^8 a^{-12} +2 z^8 a^{-14} +3 z^7 a^{-7} -5 z^7 a^{-9} -17 z^7 a^{-11} -8 z^7 a^{-13} +z^7 a^{-15} +3 z^6 a^{-6} -9 z^6 a^{-8} -5 z^6 a^{-10} -2 z^6 a^{-12} -9 z^6 a^{-14} +2 z^5 a^{-5} -6 z^5 a^{-7} +5 z^5 a^{-9} +26 z^5 a^{-11} +8 z^5 a^{-13} -5 z^5 a^{-15} +z^4 a^{-4} -6 z^4 a^{-6} +15 z^4 a^{-8} +13 z^4 a^{-10} +z^4 a^{-12} +10 z^4 a^{-14} -3 z^3 a^{-5} +6 z^3 a^{-7} -20 z^3 a^{-11} -4 z^3 a^{-13} +7 z^3 a^{-15} -2 z^2 a^{-4} +5 z^2 a^{-6} -9 z^2 a^{-8} -12 z^2 a^{-10} +2 z^2 a^{-12} -2 z^2 a^{-14} -z a^{-9} +5 z a^{-11} +3 z a^{-13} -3 z a^{-15} - a^{-6} +2 a^{-8} + a^{-10} - a^{-12} }[/math]
The A2 invariant Data:K11a360/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a360/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (10, 31)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 40 }[/math] [math]\displaystyle{ 248 }[/math] [math]\displaystyle{ 800 }[/math] [math]\displaystyle{ \frac{6092}{3} }[/math] [math]\displaystyle{ \frac{1036}{3} }[/math] [math]\displaystyle{ 9920 }[/math] [math]\displaystyle{ \frac{54512}{3} }[/math] [math]\displaystyle{ \frac{9632}{3} }[/math] [math]\displaystyle{ 2744 }[/math] [math]\displaystyle{ \frac{32000}{3} }[/math] [math]\displaystyle{ 30752 }[/math] [math]\displaystyle{ \frac{243680}{3} }[/math] [math]\displaystyle{ \frac{41440}{3} }[/math] [math]\displaystyle{ \frac{493423}{3} }[/math] [math]\displaystyle{ \frac{44}{3} }[/math] [math]\displaystyle{ \frac{638500}{9} }[/math] [math]\displaystyle{ \frac{11461}{9} }[/math] [math]\displaystyle{ \frac{29359}{3} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11a360. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
27           1-1
25          1 1
23         31 -2
21        21  1
19       53   -2
17      42    2
15     45     1
13    44      0
11   24       2
9  24        -2
7  2         2
512          -1
31           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=10 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=11 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a359.gif

K11a359

K11a361.gif

K11a361