K11a55
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8493 X16,6,17,5 X2837 X18,9,19,10 X20,11,21,12 X22,13,1,14 X6,16,7,15 X14,17,15,18 X10,19,11,20 X12,21,13,22 |
| Gauss code | 1, -4, 2, -1, 3, -8, 4, -2, 5, -10, 6, -11, 7, -9, 8, -3, 9, -5, 10, -6, 11, -7 |
| Dowker-Thistlethwaite code | 4 8 16 2 18 20 22 6 14 10 12 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+5 t^3-10 t^2+13 t-13+13 t^{-1} -10 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-3 z^6+2 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 71, -2 } |
| Jones polynomial | [math]\displaystyle{ -q^4+2 q^3-4 q^2+7 q-8+11 q^{-1} -11 q^{-2} +10 q^{-3} -8 q^{-4} +5 q^{-5} -3 q^{-6} + q^{-7} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-13 a^2 z^4-z^4 a^{-2} +10 z^4+4 a^4 z^2-13 a^2 z^2-4 z^2 a^{-2} +15 z^2+a^4-5 a^2-3 a^{-2} +8 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^2 z^{10}+z^{10}+3 a^3 z^9+5 a z^9+2 z^9 a^{-1} +4 a^4 z^8+3 a^2 z^8+2 z^8 a^{-2} +z^8+4 a^5 z^7-6 a^3 z^7-17 a z^7-6 z^7 a^{-1} +z^7 a^{-3} +4 a^6 z^6-7 a^4 z^6-19 a^2 z^6-9 z^6 a^{-2} -17 z^6+3 a^7 z^5-3 a^5 z^5+4 a^3 z^5+14 a z^5-z^5 a^{-1} -5 z^5 a^{-3} +a^8 z^4-4 a^6 z^4+7 a^4 z^4+29 a^2 z^4+12 z^4 a^{-2} +29 z^4-4 a^7 z^3-2 a^5 z^3+a^3 z^3+2 a z^3+10 z^3 a^{-1} +7 z^3 a^{-3} -a^8 z^2-4 a^4 z^2-19 a^2 z^2-8 z^2 a^{-2} -22 z^2+a^7 z+2 a^5 z-a^3 z-5 a z-6 z a^{-1} -3 z a^{-3} +a^4+5 a^2+3 a^{-2} +8 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{20}-q^{18}+q^{16}-q^{14}-q^{12}-3 q^8+2 q^6-q^4+3 q^2+3+ q^{-2} +2 q^{-4} - q^{-6} - q^{-10} - q^{-12} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{114}-2 q^{112}+4 q^{110}-6 q^{108}+4 q^{106}-2 q^{104}-4 q^{102}+12 q^{100}-18 q^{98}+22 q^{96}-19 q^{94}+8 q^{92}+7 q^{90}-23 q^{88}+37 q^{86}-40 q^{84}+34 q^{82}-19 q^{80}-2 q^{78}+23 q^{76}-36 q^{74}+46 q^{72}-44 q^{70}+33 q^{68}-16 q^{66}-8 q^{64}+30 q^{62}-44 q^{60}+48 q^{58}-35 q^{56}+11 q^{54}+15 q^{52}-37 q^{50}+35 q^{48}-16 q^{46}-16 q^{44}+41 q^{42}-49 q^{40}+26 q^{38}+11 q^{36}-55 q^{34}+81 q^{32}-86 q^{30}+51 q^{28}-2 q^{26}-53 q^{24}+93 q^{22}-101 q^{20}+80 q^{18}-33 q^{16}-17 q^{14}+59 q^{12}-77 q^{10}+73 q^8-34 q^6-7 q^4+46 q^2-52+39 q^{-2} +6 q^{-4} -44 q^{-6} +68 q^{-8} -59 q^{-10} +26 q^{-12} +25 q^{-14} -68 q^{-16} +92 q^{-18} -78 q^{-20} +42 q^{-22} +3 q^{-24} -47 q^{-26} +66 q^{-28} -65 q^{-30} +45 q^{-32} -19 q^{-34} -7 q^{-36} +22 q^{-38} -29 q^{-40} +23 q^{-42} -16 q^{-44} +6 q^{-46} -5 q^{-50} +4 q^{-52} -4 q^{-54} +3 q^{-56} - q^{-58} + q^{-60} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a55"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+5 t^3-10 t^2+13 t-13+13 t^{-1} -10 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-3 z^6+2 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 71, -2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^4+2 q^3-4 q^2+7 q-8+11 q^{-1} -11 q^{-2} +10 q^{-3} -8 q^{-4} +5 q^{-5} -3 q^{-6} + q^{-7} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -a^2 z^8+a^4 z^6-6 a^2 z^6+2 z^6+4 a^4 z^4-13 a^2 z^4-z^4 a^{-2} +10 z^4+4 a^4 z^2-13 a^2 z^2-4 z^2 a^{-2} +15 z^2+a^4-5 a^2-3 a^{-2} +8 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^2 z^{10}+z^{10}+3 a^3 z^9+5 a z^9+2 z^9 a^{-1} +4 a^4 z^8+3 a^2 z^8+2 z^8 a^{-2} +z^8+4 a^5 z^7-6 a^3 z^7-17 a z^7-6 z^7 a^{-1} +z^7 a^{-3} +4 a^6 z^6-7 a^4 z^6-19 a^2 z^6-9 z^6 a^{-2} -17 z^6+3 a^7 z^5-3 a^5 z^5+4 a^3 z^5+14 a z^5-z^5 a^{-1} -5 z^5 a^{-3} +a^8 z^4-4 a^6 z^4+7 a^4 z^4+29 a^2 z^4+12 z^4 a^{-2} +29 z^4-4 a^7 z^3-2 a^5 z^3+a^3 z^3+2 a z^3+10 z^3 a^{-1} +7 z^3 a^{-3} -a^8 z^2-4 a^4 z^2-19 a^2 z^2-8 z^2 a^{-2} -22 z^2+a^7 z+2 a^5 z-a^3 z-5 a z-6 z a^{-1} -3 z a^{-3} +a^4+5 a^2+3 a^{-2} +8 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a55"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+5 t^3-10 t^2+13 t-13+13 t^{-1} -10 t^{-2} +5 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ -q^4+2 q^3-4 q^2+7 q-8+11 q^{-1} -11 q^{-2} +10 q^{-3} -8 q^{-4} +5 q^{-5} -3 q^{-6} + q^{-7} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (2, 1) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11a55. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



