K11a86
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X12,6,13,5 X16,8,17,7 X18,10,19,9 X2,11,3,12 X20,13,21,14 X6,16,7,15 X8,18,9,17 X22,19,1,20 X14,21,15,22 |
| Gauss code | 1, -6, 2, -1, 3, -8, 4, -9, 5, -2, 6, -3, 7, -11, 8, -4, 9, -5, 10, -7, 11, -10 |
| Dowker-Thistlethwaite code | 4 10 12 16 18 2 20 6 8 22 14 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^4+5 t^3-12 t^2+18 t-19+18 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^8-3 z^6-2 z^4-z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 91, 2 } |
| Jones polynomial | [math]\displaystyle{ q^7-3 q^6+6 q^5-10 q^4+13 q^3-14 q^2+14 q-12+9 q^{-1} -5 q^{-2} +3 q^{-3} - q^{-4} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^8 a^{-2} -6 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-14 z^4 a^{-2} +4 z^4 a^{-4} +9 z^4-3 a^2 z^2-15 z^2 a^{-2} +5 z^2 a^{-4} +12 z^2-a^2-5 a^{-2} +2 a^{-4} +5 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^{10} a^{-2} +z^{10}+3 a z^9+7 z^9 a^{-1} +4 z^9 a^{-3} +3 a^2 z^8+9 z^8 a^{-2} +6 z^8 a^{-4} +6 z^8+a^3 z^7-9 a z^7-20 z^7 a^{-1} -4 z^7 a^{-3} +6 z^7 a^{-5} -13 a^2 z^6-36 z^6 a^{-2} -9 z^6 a^{-4} +5 z^6 a^{-6} -35 z^6-4 a^3 z^5+3 a z^5+14 z^5 a^{-1} -2 z^5 a^{-3} -6 z^5 a^{-5} +3 z^5 a^{-7} +17 a^2 z^4+45 z^4 a^{-2} +7 z^4 a^{-4} -5 z^4 a^{-6} +z^4 a^{-8} +49 z^4+4 a^3 z^3+5 a z^3-2 z^3 a^{-1} +z^3 a^{-3} +z^3 a^{-5} -3 z^3 a^{-7} -8 a^2 z^2-26 z^2 a^{-2} -5 z^2 a^{-4} +2 z^2 a^{-6} -z^2 a^{-8} -26 z^2-a^3 z-2 a z-z a^{-1} +z a^{-5} +z a^{-7} +a^2+5 a^{-2} +2 a^{-4} +5 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{12}+q^8+3 q^4-q^2+1+ q^{-2} -2 q^{-4} +3 q^{-6} -3 q^{-8} + q^{-10} - q^{-12} - q^{-14} +2 q^{-16} - q^{-18} + q^{-20} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{60}-2 q^{58}+5 q^{56}-9 q^{54}+10 q^{52}-11 q^{50}+3 q^{48}+14 q^{46}-35 q^{44}+57 q^{42}-66 q^{40}+48 q^{38}-8 q^{36}-54 q^{34}+115 q^{32}-153 q^{30}+144 q^{28}-77 q^{26}-25 q^{24}+131 q^{22}-196 q^{20}+197 q^{18}-123 q^{16}+13 q^{14}+97 q^{12}-163 q^{10}+159 q^8-78 q^6-23 q^4+116 q^2-144+96 q^{-2} -2 q^{-4} -111 q^{-6} +188 q^{-8} -199 q^{-10} +135 q^{-12} -10 q^{-14} -126 q^{-16} +233 q^{-18} -263 q^{-20} +201 q^{-22} -81 q^{-24} -64 q^{-26} +176 q^{-28} -222 q^{-30} +186 q^{-32} -84 q^{-34} -29 q^{-36} +115 q^{-38} -137 q^{-40} +82 q^{-42} -82 q^{-46} +119 q^{-48} -98 q^{-50} +32 q^{-52} +51 q^{-54} -118 q^{-56} +147 q^{-58} -124 q^{-60} +63 q^{-62} +7 q^{-64} -72 q^{-66} +110 q^{-68} -116 q^{-70} +101 q^{-72} -58 q^{-74} +14 q^{-76} +30 q^{-78} -62 q^{-80} +71 q^{-82} -66 q^{-84} +48 q^{-86} -20 q^{-88} -4 q^{-90} +22 q^{-92} -30 q^{-94} +28 q^{-96} -20 q^{-98} +11 q^{-100} -2 q^{-102} -4 q^{-104} +5 q^{-106} -6 q^{-108} +4 q^{-110} -2 q^{-112} + q^{-114} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a86"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^4+5 t^3-12 t^2+18 t-19+18 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^8-3 z^6-2 z^4-z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 91, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^7-3 q^6+6 q^5-10 q^4+13 q^3-14 q^2+14 q-12+9 q^{-1} -5 q^{-2} +3 q^{-3} - q^{-4} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^8 a^{-2} -6 z^6 a^{-2} +z^6 a^{-4} +2 z^6-a^2 z^4-14 z^4 a^{-2} +4 z^4 a^{-4} +9 z^4-3 a^2 z^2-15 z^2 a^{-2} +5 z^2 a^{-4} +12 z^2-a^2-5 a^{-2} +2 a^{-4} +5 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^{10} a^{-2} +z^{10}+3 a z^9+7 z^9 a^{-1} +4 z^9 a^{-3} +3 a^2 z^8+9 z^8 a^{-2} +6 z^8 a^{-4} +6 z^8+a^3 z^7-9 a z^7-20 z^7 a^{-1} -4 z^7 a^{-3} +6 z^7 a^{-5} -13 a^2 z^6-36 z^6 a^{-2} -9 z^6 a^{-4} +5 z^6 a^{-6} -35 z^6-4 a^3 z^5+3 a z^5+14 z^5 a^{-1} -2 z^5 a^{-3} -6 z^5 a^{-5} +3 z^5 a^{-7} +17 a^2 z^4+45 z^4 a^{-2} +7 z^4 a^{-4} -5 z^4 a^{-6} +z^4 a^{-8} +49 z^4+4 a^3 z^3+5 a z^3-2 z^3 a^{-1} +z^3 a^{-3} +z^3 a^{-5} -3 z^3 a^{-7} -8 a^2 z^2-26 z^2 a^{-2} -5 z^2 a^{-4} +2 z^2 a^{-6} -z^2 a^{-8} -26 z^2-a^3 z-2 a z-z a^{-1} +z a^{-5} +z a^{-7} +a^2+5 a^{-2} +2 a^{-4} +5 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a205,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a86"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^4+5 t^3-12 t^2+18 t-19+18 t^{-1} -12 t^{-2} +5 t^{-3} - t^{-4} }[/math], [math]\displaystyle{ q^7-3 q^6+6 q^5-10 q^4+13 q^3-14 q^2+14 q-12+9 q^{-1} -5 q^{-2} +3 q^{-3} - q^{-4} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a205,} |
Vassiliev invariants
| V2 and V3: | (-1, -2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]2 is the signature of K11a86. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



