K11a88
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X10,3,11,4 X12,6,13,5 X16,7,17,8 X18,9,19,10 X2,11,3,12 X20,14,21,13 X22,16,1,15 X8,17,9,18 X6,19,7,20 X14,22,15,21 |
| Gauss code | 1, -6, 2, -1, 3, -10, 4, -9, 5, -2, 6, -3, 7, -11, 8, -4, 9, -5, 10, -7, 11, -8 |
| Dowker-Thistlethwaite code | 4 10 12 16 18 2 20 22 8 6 14 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ t^4-5 t^3+12 t^2-20 t+25-20 t^{-1} +12 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
| Conway polynomial | [math]\displaystyle{ z^8+3 z^6+2 z^4-z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 101, 0 } |
| Jones polynomial | [math]\displaystyle{ -q^5+3 q^4-6 q^3+11 q^2-14 q+16-16 q^{-1} +14 q^{-2} -10 q^{-3} +6 q^{-4} -3 q^{-5} + q^{-6} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +6 z^6+a^4 z^4-9 a^2 z^4-4 z^4 a^{-2} +14 z^4+3 a^4 z^2-13 a^2 z^2-5 z^2 a^{-2} +14 z^2+2 a^4-5 a^2- a^{-2} +5 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ a^2 z^{10}+z^{10}+3 a^3 z^9+7 a z^9+4 z^9 a^{-1} +4 a^4 z^8+7 a^2 z^8+6 z^8 a^{-2} +9 z^8+3 a^5 z^7-3 a^3 z^7-16 a z^7-5 z^7 a^{-1} +5 z^7 a^{-3} +a^6 z^6-10 a^4 z^6-25 a^2 z^6-14 z^6 a^{-2} +3 z^6 a^{-4} -31 z^6-9 a^5 z^5-4 a^3 z^5+18 a z^5+2 z^5 a^{-1} -10 z^5 a^{-3} +z^5 a^{-5} -3 a^6 z^4+7 a^4 z^4+33 a^2 z^4+16 z^4 a^{-2} -6 z^4 a^{-4} +45 z^4+7 a^5 z^3+2 a^3 z^3-10 a z^3+3 z^3 a^{-1} +6 z^3 a^{-3} -2 z^3 a^{-5} +2 a^6 z^2-4 a^4 z^2-23 a^2 z^2-7 z^2 a^{-2} +2 z^2 a^{-4} -26 z^2-a^5 z+a z-z a^{-1} -z a^{-3} +2 a^4+5 a^2+ a^{-2} +5 }[/math] |
| The A2 invariant | [math]\displaystyle{ q^{18}+q^{12}-3 q^{10}+2 q^8-q^6-q^4+2 q^2-3+4 q^{-2} - q^{-4} +2 q^{-6} +2 q^{-8} -2 q^{-10} + q^{-12} - q^{-14} }[/math] |
| The G2 invariant | [math]\displaystyle{ q^{94}-2 q^{92}+5 q^{90}-9 q^{88}+10 q^{86}-10 q^{84}+2 q^{82}+15 q^{80}-34 q^{78}+55 q^{76}-63 q^{74}+49 q^{72}-15 q^{70}-43 q^{68}+110 q^{66}-157 q^{64}+169 q^{62}-122 q^{60}+26 q^{58}+100 q^{56}-212 q^{54}+273 q^{52}-249 q^{50}+137 q^{48}+23 q^{46}-180 q^{44}+267 q^{42}-248 q^{40}+141 q^{38}+20 q^{36}-159 q^{34}+209 q^{32}-161 q^{30}+8 q^{28}+159 q^{26}-270 q^{24}+270 q^{22}-147 q^{20}-56 q^{18}+264 q^{16}-395 q^{14}+397 q^{12}-269 q^{10}+41 q^8+194 q^6-357 q^4+399 q^2-297+117 q^{-2} +85 q^{-4} -224 q^{-6} +254 q^{-8} -171 q^{-10} +19 q^{-12} +132 q^{-14} -205 q^{-16} +178 q^{-18} -50 q^{-20} -109 q^{-22} +236 q^{-24} -274 q^{-26} +216 q^{-28} -84 q^{-30} -82 q^{-32} +206 q^{-34} -259 q^{-36} +232 q^{-38} -136 q^{-40} +24 q^{-42} +70 q^{-44} -129 q^{-46} +139 q^{-48} -114 q^{-50} +67 q^{-52} -16 q^{-54} -22 q^{-56} +41 q^{-58} -45 q^{-60} +37 q^{-62} -23 q^{-64} +11 q^{-66} + q^{-68} -7 q^{-70} +7 q^{-72} -7 q^{-74} +4 q^{-76} -2 q^{-78} + q^{-80} }[/math] |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11a88"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ t^4-5 t^3+12 t^2-20 t+25-20 t^{-1} +12 t^{-2} -5 t^{-3} + t^{-4} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ z^8+3 z^6+2 z^4-z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 101, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ -q^5+3 q^4-6 q^3+11 q^2-14 q+16-16 q^{-1} +14 q^{-2} -10 q^{-3} +6 q^{-4} -3 q^{-5} + q^{-6} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ z^8-2 a^2 z^6-z^6 a^{-2} +6 z^6+a^4 z^4-9 a^2 z^4-4 z^4 a^{-2} +14 z^4+3 a^4 z^2-13 a^2 z^2-5 z^2 a^{-2} +14 z^2+2 a^4-5 a^2- a^{-2} +5 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ a^2 z^{10}+z^{10}+3 a^3 z^9+7 a z^9+4 z^9 a^{-1} +4 a^4 z^8+7 a^2 z^8+6 z^8 a^{-2} +9 z^8+3 a^5 z^7-3 a^3 z^7-16 a z^7-5 z^7 a^{-1} +5 z^7 a^{-3} +a^6 z^6-10 a^4 z^6-25 a^2 z^6-14 z^6 a^{-2} +3 z^6 a^{-4} -31 z^6-9 a^5 z^5-4 a^3 z^5+18 a z^5+2 z^5 a^{-1} -10 z^5 a^{-3} +z^5 a^{-5} -3 a^6 z^4+7 a^4 z^4+33 a^2 z^4+16 z^4 a^{-2} -6 z^4 a^{-4} +45 z^4+7 a^5 z^3+2 a^3 z^3-10 a z^3+3 z^3 a^{-1} +6 z^3 a^{-3} -2 z^3 a^{-5} +2 a^6 z^2-4 a^4 z^2-23 a^2 z^2-7 z^2 a^{-2} +2 z^2 a^{-4} -26 z^2-a^5 z+a z-z a^{-1} -z a^{-3} +2 a^4+5 a^2+ a^{-2} +5 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {K11a84,}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11a88"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ t^4-5 t^3+12 t^2-20 t+25-20 t^{-1} +12 t^{-2} -5 t^{-3} + t^{-4} }[/math], [math]\displaystyle{ -q^5+3 q^4-6 q^3+11 q^2-14 q+16-16 q^{-1} +14 q^{-2} -10 q^{-3} +6 q^{-4} -3 q^{-5} + q^{-6} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{K11a84,} |
Vassiliev invariants
| V2 and V3: | (-1, 2) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11a88. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



