K11a94

From Knot Atlas
Jump to navigationJump to search

K11a93.gif

K11a93

K11a95.gif

K11a95

K11a94.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11a94 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X10,4,11,3 X12,6,13,5 X18,8,19,7 X2,10,3,9 X8,12,9,11 X20,14,21,13 X22,16,1,15 X6,18,7,17 X16,20,17,19 X14,22,15,21
Gauss code 1, -5, 2, -1, 3, -9, 4, -6, 5, -2, 6, -3, 7, -11, 8, -10, 9, -4, 10, -7, 11, -8
Dowker-Thistlethwaite code 4 10 12 18 2 8 20 22 6 16 14
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart1.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart2.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11a94 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 3 }[/math]
Rasmussen s-Invariant -6

[edit Notes for K11a94's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 4 t^3-13 t^2+23 t-27+23 t^{-1} -13 t^{-2} +4 t^{-3} }[/math]
Conway polynomial [math]\displaystyle{ 4 z^6+11 z^4+7 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 107, 6 }
Jones polynomial [math]\displaystyle{ -q^{14}+4 q^{13}-8 q^{12}+12 q^{11}-16 q^{10}+17 q^9-17 q^8+14 q^7-9 q^6+6 q^5-2 q^4+q^3 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^6 a^{-6} +2 z^6 a^{-8} +z^6 a^{-10} +4 z^4 a^{-6} +7 z^4 a^{-8} +z^4 a^{-10} -z^4 a^{-12} +5 z^2 a^{-6} +7 z^2 a^{-8} -4 z^2 a^{-10} -z^2 a^{-12} +2 a^{-6} +2 a^{-8} -4 a^{-10} + a^{-12} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^{10} a^{-10} +z^{10} a^{-12} +2 z^9 a^{-9} +6 z^9 a^{-11} +4 z^9 a^{-13} +3 z^8 a^{-8} +5 z^8 a^{-10} +9 z^8 a^{-12} +7 z^8 a^{-14} +2 z^7 a^{-7} +2 z^7 a^{-9} -6 z^7 a^{-11} +z^7 a^{-13} +7 z^7 a^{-15} +z^6 a^{-6} -7 z^6 a^{-8} -13 z^6 a^{-10} -19 z^6 a^{-12} -10 z^6 a^{-14} +4 z^6 a^{-16} -5 z^5 a^{-7} -14 z^5 a^{-9} -7 z^5 a^{-11} -11 z^5 a^{-13} -12 z^5 a^{-15} +z^5 a^{-17} -4 z^4 a^{-6} +6 z^4 a^{-8} +13 z^4 a^{-10} +12 z^4 a^{-12} +3 z^4 a^{-14} -6 z^4 a^{-16} +2 z^3 a^{-7} +15 z^3 a^{-9} +17 z^3 a^{-11} +10 z^3 a^{-13} +5 z^3 a^{-15} -z^3 a^{-17} +5 z^2 a^{-6} -5 z^2 a^{-8} -10 z^2 a^{-10} -z^2 a^{-12} +z^2 a^{-16} +z a^{-7} -6 z a^{-9} -9 z a^{-11} -3 z a^{-13} -z a^{-15} -2 a^{-6} +2 a^{-8} +4 a^{-10} + a^{-12} }[/math]
The A2 invariant Data:K11a94/QuantumInvariant/A2/1,0
The G2 invariant Data:K11a94/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (7, 17)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 28 }[/math] [math]\displaystyle{ 136 }[/math] [math]\displaystyle{ 392 }[/math] [math]\displaystyle{ \frac{2546}{3} }[/math] [math]\displaystyle{ \frac{310}{3} }[/math] [math]\displaystyle{ 3808 }[/math] [math]\displaystyle{ \frac{17872}{3} }[/math] [math]\displaystyle{ \frac{2848}{3} }[/math] [math]\displaystyle{ 616 }[/math] [math]\displaystyle{ \frac{10976}{3} }[/math] [math]\displaystyle{ 9248 }[/math] [math]\displaystyle{ \frac{71288}{3} }[/math] [math]\displaystyle{ \frac{8680}{3} }[/math] [math]\displaystyle{ \frac{1301737}{30} }[/math] [math]\displaystyle{ \frac{13682}{5} }[/math] [math]\displaystyle{ \frac{600554}{45} }[/math] [math]\displaystyle{ \frac{5399}{18} }[/math] [math]\displaystyle{ \frac{46537}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]6 is the signature of K11a94. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
01234567891011χ
29           1-1
27          3 3
25         51 -4
23        73  4
21       95   -4
19      87    1
17     99     0
15    58      -3
13   49       5
11  25        -3
9  4         4
712          -1
51           1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=5 }[/math] [math]\displaystyle{ i=7 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{8}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{9}\oplus{\mathbb Z}_2^{8} }[/math] [math]\displaystyle{ {\mathbb Z}^{8} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{7}\oplus{\mathbb Z}_2^{9} }[/math] [math]\displaystyle{ {\mathbb Z}^{9} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{7} }[/math] [math]\displaystyle{ {\mathbb Z}^{7} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=10 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=11 }[/math] [math]\displaystyle{ {\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11a93.gif

K11a93

K11a95.gif

K11a95