K11n14
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X4251 X8394 X10,6,11,5 X7,16,8,17 X2,9,3,10 X18,11,19,12 X20,13,21,14 X15,6,16,7 X22,17,1,18 X12,19,13,20 X14,21,15,22 |
| Gauss code | 1, -5, 2, -1, 3, 8, -4, -2, 5, -3, 6, -10, 7, -11, -8, 4, 9, -6, 10, -7, 11, -9 |
| Dowker-Thistlethwaite code | 4 8 10 -16 2 18 20 -6 22 12 14 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^3+6 t^2-10 t+11-10 t^{-1} +6 t^{-2} - t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^6+5 z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 45, -4 } |
| Jones polynomial | [math]\displaystyle{ 2 q^{-2} -3 q^{-3} +5 q^{-4} -7 q^{-5} +8 q^{-6} -7 q^{-7} +6 q^{-8} -4 q^{-9} +2 q^{-10} - q^{-11} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^2 a^{10}-2 a^{10}+2 z^4 a^8+6 z^2 a^8+4 a^8-z^6 a^6-4 z^4 a^6-6 z^2 a^6-4 a^6+2 z^4 a^4+6 z^2 a^4+3 a^4 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ z^5 a^{13}-3 z^3 a^{13}+2 z a^{13}+2 z^6 a^{12}-5 z^4 a^{12}+2 z^2 a^{12}+2 z^7 a^{11}-3 z^5 a^{11}-z^3 a^{11}+2 z^8 a^{10}-5 z^6 a^{10}+8 z^4 a^{10}-8 z^2 a^{10}+2 a^{10}+z^9 a^9-z^7 a^9+3 z^3 a^9-z a^9+4 z^8 a^8-15 z^6 a^8+27 z^4 a^8-17 z^2 a^8+4 a^8+z^9 a^7-2 z^7 a^7+3 z^5 a^7+z a^7+2 z^8 a^6-8 z^6 a^6+17 z^4 a^6-15 z^2 a^6+4 a^6+z^7 a^5-z^5 a^5-z^3 a^5+3 z^4 a^4-8 z^2 a^4+3 a^4 }[/math] |
| The A2 invariant | [math]\displaystyle{ -q^{34}-q^{32}-q^{28}+2 q^{26}+q^{24}+q^{20}-2 q^{18}+q^{16}-q^{14}+2 q^{10}+2 q^6 }[/math] |
| The G2 invariant | Data:K11n14/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11n14"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^3+6 t^2-10 t+11-10 t^{-1} +6 t^{-2} - t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^6+5 z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 45, -4 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ 2 q^{-2} -3 q^{-3} +5 q^{-4} -7 q^{-5} +8 q^{-6} -7 q^{-7} +6 q^{-8} -4 q^{-9} +2 q^{-10} - q^{-11} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^2 a^{10}-2 a^{10}+2 z^4 a^8+6 z^2 a^8+4 a^8-z^6 a^6-4 z^4 a^6-6 z^2 a^6-4 a^6+2 z^4 a^4+6 z^2 a^4+3 a^4 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ z^5 a^{13}-3 z^3 a^{13}+2 z a^{13}+2 z^6 a^{12}-5 z^4 a^{12}+2 z^2 a^{12}+2 z^7 a^{11}-3 z^5 a^{11}-z^3 a^{11}+2 z^8 a^{10}-5 z^6 a^{10}+8 z^4 a^{10}-8 z^2 a^{10}+2 a^{10}+z^9 a^9-z^7 a^9+3 z^3 a^9-z a^9+4 z^8 a^8-15 z^6 a^8+27 z^4 a^8-17 z^2 a^8+4 a^8+z^9 a^7-2 z^7 a^7+3 z^5 a^7+z a^7+2 z^8 a^6-8 z^6 a^6+17 z^4 a^6-15 z^2 a^6+4 a^6+z^7 a^5-z^5 a^5-z^3 a^5+3 z^4 a^4-8 z^2 a^4+3 a^4 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {K11n121,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11n14"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^3+6 t^2-10 t+11-10 t^{-1} +6 t^{-2} - t^{-3} }[/math], [math]\displaystyle{ 2 q^{-2} -3 q^{-3} +5 q^{-4} -7 q^{-5} +8 q^{-6} -7 q^{-7} +6 q^{-8} -4 q^{-9} +2 q^{-10} - q^{-11} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{K11n121,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (5, -13) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-4 is the signature of K11n14. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



