K11n156
|
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
| Planar diagram presentation | X6271 X3,11,4,10 X12,6,13,5 X14,7,15,8 X16,10,17,9 X11,19,12,18 X22,13,1,14 X20,16,21,15 X17,4,18,5 X2,19,3,20 X8,21,9,22 |
| Gauss code | 1, -10, -2, 9, 3, -1, 4, -11, 5, 2, -6, -3, 7, -4, 8, -5, -9, 6, 10, -8, 11, -7 |
| Dowker-Thistlethwaite code | 6 -10 12 14 16 -18 22 20 -4 2 8 |
| A Braid Representative | |||||
| A Morse Link Presentation |
|
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
| Alexander polynomial | [math]\displaystyle{ -t^3+7 t^2-18 t+25-18 t^{-1} +7 t^{-2} - t^{-3} }[/math] |
| Conway polynomial | [math]\displaystyle{ -z^6+z^4+z^2+1 }[/math] |
| 2nd Alexander ideal (db, data sources) | [math]\displaystyle{ \{1\} }[/math] |
| Determinant and Signature | { 77, 0 } |
| Jones polynomial | [math]\displaystyle{ q^6-4 q^5+7 q^4-10 q^3+13 q^2-13 q+12-9 q^{-1} +6 q^{-2} -2 q^{-3} }[/math] |
| HOMFLY-PT polynomial (db, data sources) | [math]\displaystyle{ -z^6 a^{-2} -3 z^4 a^{-2} +z^4 a^{-4} +3 z^4-2 a^2 z^2-4 z^2 a^{-2} +z^2 a^{-4} +6 z^2-a^2- a^{-2} +3 }[/math] |
| Kauffman polynomial (db, data sources) | [math]\displaystyle{ 3 z^9 a^{-1} +3 z^9 a^{-3} +12 z^8 a^{-2} +6 z^8 a^{-4} +6 z^8+4 a z^7-z^7 a^{-1} -z^7 a^{-3} +4 z^7 a^{-5} +a^2 z^6-35 z^6 a^{-2} -18 z^6 a^{-4} +z^6 a^{-6} -15 z^6-3 a z^5-6 z^5 a^{-1} -14 z^5 a^{-3} -11 z^5 a^{-5} +6 a^2 z^4+33 z^4 a^{-2} +14 z^4 a^{-4} -2 z^4 a^{-6} +23 z^4+3 a^3 z^3+3 a z^3+5 z^3 a^{-1} +11 z^3 a^{-3} +6 z^3 a^{-5} -6 a^2 z^2-12 z^2 a^{-2} -3 z^2 a^{-4} -15 z^2-a^3 z-2 a z-2 z a^{-1} -z a^{-3} +a^2+ a^{-2} +3 }[/math] |
| The A2 invariant | [math]\displaystyle{ -2 q^{10}+q^8+2 q^6-2 q^4+3 q^2-1+ q^{-2} +2 q^{-4} - q^{-6} +3 q^{-8} -3 q^{-10} + q^{-14} -2 q^{-16} + q^{-18} }[/math] |
| The G2 invariant | Data:K11n156/QuantumInvariant/G2/1,0 |
KnotTheory`, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11n156"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
[math]\displaystyle{ -t^3+7 t^2-18 t+25-18 t^{-1} +7 t^{-2} - t^{-3} }[/math] |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
[math]\displaystyle{ -z^6+z^4+z^2+1 }[/math] |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
[math]\displaystyle{ \{1\} }[/math] |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 77, 0 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
[math]\displaystyle{ q^6-4 q^5+7 q^4-10 q^3+13 q^2-13 q+12-9 q^{-1} +6 q^{-2} -2 q^{-3} }[/math] |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
[math]\displaystyle{ -z^6 a^{-2} -3 z^4 a^{-2} +z^4 a^{-4} +3 z^4-2 a^2 z^2-4 z^2 a^{-2} +z^2 a^{-4} +6 z^2-a^2- a^{-2} +3 }[/math] |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
[math]\displaystyle{ 3 z^9 a^{-1} +3 z^9 a^{-3} +12 z^8 a^{-2} +6 z^8 a^{-4} +6 z^8+4 a z^7-z^7 a^{-1} -z^7 a^{-3} +4 z^7 a^{-5} +a^2 z^6-35 z^6 a^{-2} -18 z^6 a^{-4} +z^6 a^{-6} -15 z^6-3 a z^5-6 z^5 a^{-1} -14 z^5 a^{-3} -11 z^5 a^{-5} +6 a^2 z^4+33 z^4 a^{-2} +14 z^4 a^{-4} -2 z^4 a^{-6} +23 z^4+3 a^3 z^3+3 a z^3+5 z^3 a^{-1} +11 z^3 a^{-3} +6 z^3 a^{-5} -6 a^2 z^2-12 z^2 a^{-2} -3 z^2 a^{-4} -15 z^2-a^3 z-2 a z-2 z a^{-1} -z a^{-3} +a^2+ a^{-2} +3 }[/math] |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {10_71, K11n179,}
Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}
KnotTheory`. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11n156"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ [math]\displaystyle{ -t^3+7 t^2-18 t+25-18 t^{-1} +7 t^{-2} - t^{-3} }[/math], [math]\displaystyle{ q^6-4 q^5+7 q^4-10 q^3+13 q^2-13 q+12-9 q^{-1} +6 q^{-2} -2 q^{-3} }[/math] } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{10_71, K11n179,} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
| V2 and V3: | (1, 0) |
| V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]0 is the signature of K11n156. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|



