K11n171

From Knot Atlas
Jump to navigationJump to search

K11n170.gif

K11n170

K11n172.gif

K11n172

K11n171.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n171 at Knotilus!



Knot presentations

Planar diagram presentation X6271 X3,11,4,10 X5,17,6,16 X12,8,13,7 X9,19,10,18 X11,3,12,2 X22,14,1,13 X20,16,21,15 X17,5,18,4 X19,9,20,8 X14,22,15,21
Gauss code 1, 6, -2, 9, -3, -1, 4, 10, -5, 2, -6, -4, 7, -11, 8, 3, -9, 5, -10, -8, 11, -7
Dowker-Thistlethwaite code 6 -10 -16 12 -18 -2 22 20 -4 -8 14
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart2.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
A Morse Link Presentation K11n171 ML.gif

Three dimensional invariants

Symmetry type Reversible
Unknotting number [math]\displaystyle{ \{2,3\} }[/math]
3-genus 2
Bridge index 3
Super bridge index Missing
Nakanishi index Missing
Maximal Thurston-Bennequin number Data:K11n171/ThurstonBennequinNumber
Hyperbolic Volume 13.6066
A-Polynomial See Data:K11n171/A-polynomial

[edit Notes for K11n171's three dimensional invariants]

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant -4

[edit Notes for K11n171's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ 6 t^2-16 t+21-16 t^{-1} +6 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ 6 z^4+8 z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 65, 4 }
Jones polynomial [math]\displaystyle{ -2 q^{11}+4 q^{10}-7 q^9+10 q^8-11 q^7+11 q^6-9 q^5+7 q^4-3 q^3+q^2 }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^4 a^{-4} +3 z^4 a^{-6} +2 z^4 a^{-8} +z^2 a^{-4} +6 z^2 a^{-6} +3 z^2 a^{-8} -2 z^2 a^{-10} +2 a^{-6} + a^{-8} -2 a^{-10} }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^9 a^{-9} +z^9 a^{-11} +4 z^8 a^{-8} +5 z^8 a^{-10} +z^8 a^{-12} +6 z^7 a^{-7} +6 z^7 a^{-9} +6 z^6 a^{-6} -3 z^6 a^{-8} -9 z^6 a^{-10} +3 z^5 a^{-5} -7 z^5 a^{-7} -12 z^5 a^{-9} +z^5 a^{-11} +3 z^5 a^{-13} +z^4 a^{-4} -9 z^4 a^{-6} +z^4 a^{-8} +7 z^4 a^{-10} -4 z^4 a^{-12} -2 z^3 a^{-5} +2 z^3 a^{-7} +5 z^3 a^{-9} -7 z^3 a^{-11} -8 z^3 a^{-13} -z^2 a^{-4} +7 z^2 a^{-6} -2 z^2 a^{-8} -7 z^2 a^{-10} +3 z^2 a^{-12} +z a^{-7} -z a^{-9} +3 z a^{-11} +5 z a^{-13} -2 a^{-6} + a^{-8} +2 a^{-10} }[/math]
The A2 invariant Data:K11n171/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n171/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {K11a238,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (8, 22)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 32 }[/math] [math]\displaystyle{ 176 }[/math] [math]\displaystyle{ 512 }[/math] [math]\displaystyle{ \frac{3808}{3} }[/math] [math]\displaystyle{ \frac{608}{3} }[/math] [math]\displaystyle{ 5632 }[/math] [math]\displaystyle{ \frac{30272}{3} }[/math] [math]\displaystyle{ \frac{5312}{3} }[/math] [math]\displaystyle{ 1424 }[/math] [math]\displaystyle{ \frac{16384}{3} }[/math] [math]\displaystyle{ 15488 }[/math] [math]\displaystyle{ \frac{121856}{3} }[/math] [math]\displaystyle{ \frac{19456}{3} }[/math] [math]\displaystyle{ \frac{1221364}{15} }[/math] [math]\displaystyle{ \frac{5568}{5} }[/math] [math]\displaystyle{ \frac{1494256}{45} }[/math] [math]\displaystyle{ \frac{5948}{9} }[/math] [math]\displaystyle{ \frac{66724}{15} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]4 is the signature of K11n171. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
0123456789χ
23         2-2
21        2 2
19       52 -3
17      52  3
15     65   -1
13    55    0
11   46     2
9  35      -2
7  4       4
513        -2
31         1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=3 }[/math] [math]\displaystyle{ i=5 }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=1 }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=2 }[/math] [math]\displaystyle{ {\mathbb Z}^{4}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=3 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{4} }[/math] [math]\displaystyle{ {\mathbb Z}^{4} }[/math]
[math]\displaystyle{ r=4 }[/math] [math]\displaystyle{ {\mathbb Z}^{6}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=5 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{6} }[/math] [math]\displaystyle{ {\mathbb Z}^{6} }[/math]
[math]\displaystyle{ r=6 }[/math] [math]\displaystyle{ {\mathbb Z}^{5}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{5} }[/math] [math]\displaystyle{ {\mathbb Z}^{5} }[/math]
[math]\displaystyle{ r=8 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=9 }[/math] [math]\displaystyle{ {\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n170.gif

K11n170

K11n172.gif

K11n172