K11n178
|
|
![]() (Knotscape image) |
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots. |
Knot presentations
Planar diagram presentation | X6271 X3,11,4,10 X16,6,17,5 X18,7,19,8 X20,10,21,9 X11,5,12,4 X8,14,9,13 X2,16,3,15 X22,17,1,18 X14,19,15,20 X12,22,13,21 |
Gauss code | 1, -8, -2, 6, 3, -1, 4, -7, 5, 2, -6, -11, 7, -10, 8, -3, 9, -4, 10, -5, 11, -9 |
Dowker-Thistlethwaite code | 6 -10 16 18 20 -4 8 2 22 14 12 |
A Braid Representative |
| ||||
A Morse Link Presentation | ![]() |
Three dimensional invariants
|
Four dimensional invariants
|
Polynomial invariants
Alexander polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-9 t^2+22 t-29+22 t^{-1} -9 t^{-2} +2 t^{-3} } |
Conway polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+3 z^4+4 z^2+1} |
2nd Alexander ideal (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
Determinant and Signature | { 95, 2 } |
Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-5 q^8+9 q^7-13 q^6+16 q^5-16 q^4+15 q^3-11 q^2+7 q-2} |
HOMFLY-PT polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6 a^{-4} -2 z^4 a^{-2} +8 z^4 a^{-4} -3 z^4 a^{-6} -3 z^2 a^{-2} +12 z^2 a^{-4} -6 z^2 a^{-6} +z^2 a^{-8} - a^{-2} +5 a^{-4} -3 a^{-6} } |
Kauffman polynomial (db, data sources) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 z^9 a^{-5} +4 z^9 a^{-7} +9 z^8 a^{-4} +17 z^8 a^{-6} +8 z^8 a^{-8} +6 z^7 a^{-3} +3 z^7 a^{-5} +2 z^7 a^{-7} +5 z^7 a^{-9} +z^6 a^{-2} -22 z^6 a^{-4} -44 z^6 a^{-6} -20 z^6 a^{-8} +z^6 a^{-10} -7 z^5 a^{-3} -20 z^5 a^{-5} -24 z^5 a^{-7} -11 z^5 a^{-9} +8 z^4 a^{-2} +31 z^4 a^{-4} +35 z^4 a^{-6} +11 z^4 a^{-8} -z^4 a^{-10} +3 z^3 a^{-1} +9 z^3 a^{-3} +16 z^3 a^{-5} +14 z^3 a^{-7} +4 z^3 a^{-9} -6 z^2 a^{-2} -20 z^2 a^{-4} -15 z^2 a^{-6} -z^2 a^{-8} -z a^{-1} -3 z a^{-3} -5 z a^{-5} -z a^{-7} +2 z a^{-9} + a^{-2} +5 a^{-4} +3 a^{-6} } |
The A2 invariant | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -2+3 q^{-2} -2 q^{-4} + q^{-6} +4 q^{-8} -2 q^{-10} +4 q^{-12} -2 q^{-14} +2 q^{-16} + q^{-18} -3 q^{-20} +2 q^{-22} -3 q^{-24} - q^{-26} + q^{-28} } |
The G2 invariant | Data:K11n178/QuantumInvariant/G2/1,0 |
KnotTheory`
, as shown in the (simulated) Mathematica session below. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting. This Mathematica session is also available (albeit only for the knot 5_2) as the notebook PolynomialInvariantsSession.nb.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of August 31, 2006, 11:25:27.5625.
|
In[3]:=
|
K = Knot["K11n178"];
|
In[4]:=
|
Alexander[K][t]
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
Out[4]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-9 t^2+22 t-29+22 t^{-1} -9 t^{-2} +2 t^{-3} } |
In[5]:=
|
Conway[K][z]
|
Out[5]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6+3 z^4+4 z^2+1} |
In[6]:=
|
Alexander[K, 2][t]
|
KnotTheory::credits: The program Alexander[K, r] to compute Alexander ideals was written by Jana Archibald at the University of Toronto in the summer of 2005.
|
Out[6]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \{1\}} |
In[7]:=
|
{KnotDet[K], KnotSignature[K]}
|
Out[7]=
|
{ 95, 2 } |
In[8]:=
|
Jones[K][q]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[8]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-5 q^8+9 q^7-13 q^6+16 q^5-16 q^4+15 q^3-11 q^2+7 q-2} |
In[9]:=
|
HOMFLYPT[K][a, z]
|
KnotTheory::credits: The HOMFLYPT program was written by Scott Morrison.
|
Out[9]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 z^6 a^{-4} -2 z^4 a^{-2} +8 z^4 a^{-4} -3 z^4 a^{-6} -3 z^2 a^{-2} +12 z^2 a^{-4} -6 z^2 a^{-6} +z^2 a^{-8} - a^{-2} +5 a^{-4} -3 a^{-6} } |
In[10]:=
|
Kauffman[K][a, z]
|
KnotTheory::loading: Loading precomputed data in Kauffman4Knots`.
|
Out[10]=
|
Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 4 z^9 a^{-5} +4 z^9 a^{-7} +9 z^8 a^{-4} +17 z^8 a^{-6} +8 z^8 a^{-8} +6 z^7 a^{-3} +3 z^7 a^{-5} +2 z^7 a^{-7} +5 z^7 a^{-9} +z^6 a^{-2} -22 z^6 a^{-4} -44 z^6 a^{-6} -20 z^6 a^{-8} +z^6 a^{-10} -7 z^5 a^{-3} -20 z^5 a^{-5} -24 z^5 a^{-7} -11 z^5 a^{-9} +8 z^4 a^{-2} +31 z^4 a^{-4} +35 z^4 a^{-6} +11 z^4 a^{-8} -z^4 a^{-10} +3 z^3 a^{-1} +9 z^3 a^{-3} +16 z^3 a^{-5} +14 z^3 a^{-7} +4 z^3 a^{-9} -6 z^2 a^{-2} -20 z^2 a^{-4} -15 z^2 a^{-6} -z^2 a^{-8} -z a^{-1} -3 z a^{-3} -5 z a^{-5} -z a^{-7} +2 z a^{-9} + a^{-2} +5 a^{-4} +3 a^{-6} } |
"Similar" Knots (within the Atlas)
Same Alexander/Conway Polynomial: {}
Same Jones Polynomial (up to mirroring, Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q\leftrightarrow q^{-1}} ): {}
KnotTheory`
. Your input (in red) is realistic; all else should have the same content as in a real mathematica session, but with different formatting.
(The path below may be different on your system, and possibly also the KnotTheory` date)
In[1]:=
|
AppendTo[$Path, "C:/drorbn/projects/KAtlas/"];
<< KnotTheory`
|
Loading KnotTheory` version of May 31, 2006, 14:15:20.091.
|
In[3]:=
|
K = Knot["K11n178"];
|
In[4]:=
|
{A = Alexander[K][t], J = Jones[K][q]}
|
KnotTheory::loading: Loading precomputed data in PD4Knots`.
|
KnotTheory::loading: Loading precomputed data in Jones4Knots`.
|
Out[4]=
|
{ Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 2 t^3-9 t^2+22 t-29+22 t^{-1} -9 t^{-2} +2 t^{-3} } , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle q^9-5 q^8+9 q^7-13 q^6+16 q^5-16 q^4+15 q^3-11 q^2+7 q-2} } |
In[5]:=
|
DeleteCases[Select[AllKnots[], (A === Alexander[#][t]) &], K]
|
KnotTheory::loading: Loading precomputed data in DTCode4KnotsTo11`.
|
KnotTheory::credits: The GaussCode to PD conversion was written by Siddarth Sankaran at the University of Toronto in the summer of 2005.
|
Out[5]=
|
{} |
In[6]:=
|
DeleteCases[
Select[
AllKnots[],
(J === Jones[#][q] || (J /. q -> 1/q) === Jones[#][q]) &
],
K
]
|
KnotTheory::loading: Loading precomputed data in Jones4Knots11`.
|
Out[6]=
|
{} |
Vassiliev invariants
V2 and V3: | (4, 7) |
V2,1 through V6,9: |
|
V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.
Khovanov Homology
The coefficients of the monomials are shown, along with their alternating sums (fixed , alternation over ). The squares with yellow highlighting are those on the "critical diagonals", where or , where 2 is the signature of K11n178. Nonzero entries off the critical diagonals (if any exist) are highlighted in red. |
|
Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`
. See A Sample KnotTheory` Session.
Modifying This Page
Read me first: Modifying Knot Pages.
See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate). See/edit the Hoste-Thistlethwaite_Splice_Base (expert). Back to the top. |
|