K11n84

From Knot Atlas
Jump to navigationJump to search

K11n83.gif

K11n83

K11n85.gif

K11n85

K11n84.gif
(Knotscape image)
See the full Hoste-Thistlethwaite Table of 11 Crossing Knots.

Visit K11n84 at Knotilus!



Knot presentations

Planar diagram presentation X4251 X8394 X5,18,6,19 X7,12,8,13 X2,9,3,10 X11,17,12,16 X13,20,14,21 X15,6,16,7 X17,11,18,10 X19,22,20,1 X21,14,22,15
Gauss code 1, -5, 2, -1, -3, 8, -4, -2, 5, 9, -6, 4, -7, 11, -8, 6, -9, 3, -10, 7, -11, 10
Dowker-Thistlethwaite code 4 8 -18 -12 2 -16 -20 -6 -10 -22 -14
A Braid Representative
BraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
BraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart0.gif
BraidPart0.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart1.gifBraidPart4.gifBraidPart3.gifBraidPart2.gifBraidPart1.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart3.gif
BraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart2.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart3.gifBraidPart3.gifBraidPart0.gifBraidPart3.gifBraidPart4.gifBraidPart1.gifBraidPart4.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart3.gifBraidPart4.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart4.gifBraidPart1.gifBraidPart4.gifBraidPart0.gifBraidPart2.gifBraidPart0.gif
BraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart4.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart2.gifBraidPart0.gifBraidPart0.gifBraidPart0.gifBraidPart0.gif
A Morse Link Presentation K11n84 ML.gif

Four dimensional invariants

Smooth 4 genus Missing
Topological 4 genus Missing
Concordance genus [math]\displaystyle{ 2 }[/math]
Rasmussen s-Invariant 2

[edit Notes for K11n84's four dimensional invariants]

Polynomial invariants

Alexander polynomial [math]\displaystyle{ -2 t^2+9 t-13+9 t^{-1} -2 t^{-2} }[/math]
Conway polynomial [math]\displaystyle{ -2 z^4+z^2+1 }[/math]
2nd Alexander ideal (db, data sources) [math]\displaystyle{ \{1\} }[/math]
Determinant and Signature { 35, -2 }
Jones polynomial [math]\displaystyle{ 2 q^{-1} -3 q^{-2} +5 q^{-3} -6 q^{-4} +6 q^{-5} -5 q^{-6} +4 q^{-7} -3 q^{-8} + q^{-9} }[/math]
HOMFLY-PT polynomial (db, data sources) [math]\displaystyle{ z^2 a^8-z^4 a^6-z^2 a^6-z^4 a^4-z^2 a^4-a^4+2 z^2 a^2+2 a^2 }[/math]
Kauffman polynomial (db, data sources) [math]\displaystyle{ z^6 a^{10}-3 z^4 a^{10}+z^2 a^{10}+3 z^7 a^9-11 z^5 a^9+8 z^3 a^9-z a^9+3 z^8 a^8-11 z^6 a^8+9 z^4 a^8-2 z^2 a^8+z^9 a^7-10 z^5 a^7+11 z^3 a^7-3 z a^7+4 z^8 a^6-16 z^6 a^6+19 z^4 a^6-6 z^2 a^6+z^9 a^5-3 z^7 a^5+2 z^5 a^5+3 z^3 a^5-2 z a^5+z^8 a^4-4 z^6 a^4+7 z^4 a^4-z^2 a^4-a^4+z^5 a^3+2 z^2 a^2-2 a^2 }[/math]
The A2 invariant Data:K11n84/QuantumInvariant/A2/1,0
The G2 invariant Data:K11n84/QuantumInvariant/G2/1,0

"Similar" Knots (within the Atlas)

Same Alexander/Conway Polynomial: {9_12,}

Same Jones Polynomial (up to mirroring, [math]\displaystyle{ q\leftrightarrow q^{-1} }[/math]): {}

Vassiliev invariants

V2 and V3: (1, -1)
V2,1 through V6,9:
V2,1 V3,1 V4,1 V4,2 V4,3 V5,1 V5,2 V5,3 V5,4 V6,1 V6,2 V6,3 V6,4 V6,5 V6,6 V6,7 V6,8 V6,9
[math]\displaystyle{ 4 }[/math] [math]\displaystyle{ -8 }[/math] [math]\displaystyle{ 8 }[/math] [math]\displaystyle{ \frac{110}{3} }[/math] [math]\displaystyle{ \frac{58}{3} }[/math] [math]\displaystyle{ -32 }[/math] [math]\displaystyle{ -\frac{464}{3} }[/math] [math]\displaystyle{ -\frac{224}{3} }[/math] [math]\displaystyle{ -40 }[/math] [math]\displaystyle{ \frac{32}{3} }[/math] [math]\displaystyle{ 32 }[/math] [math]\displaystyle{ \frac{440}{3} }[/math] [math]\displaystyle{ \frac{232}{3} }[/math] [math]\displaystyle{ \frac{15871}{30} }[/math] [math]\displaystyle{ \frac{458}{15} }[/math] [math]\displaystyle{ \frac{17942}{45} }[/math] [math]\displaystyle{ \frac{65}{18} }[/math] [math]\displaystyle{ \frac{1951}{30} }[/math]

V2,1 through V6,9 were provided by Petr Dunin-Barkowski <barkovs@itep.ru>, Andrey Smirnov <asmirnov@itep.ru>, and Alexei Sleptsov <sleptsov@itep.ru> and uploaded on October 2010 by User:Drorbn. Note that they are normalized differently than V2 and V3.

Khovanov Homology

The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). The squares with yellow highlighting are those on the "critical diagonals", where [math]\displaystyle{ j-2r=s+1 }[/math] or [math]\displaystyle{ j-2r=s-1 }[/math], where [math]\displaystyle{ s= }[/math]-2 is the signature of K11n84. Nonzero entries off the critical diagonals (if any exist) are highlighted in red.   
\ r
  \  
j \
-8-7-6-5-4-3-2-10χ
-1        22
-3       21-1
-5      31 2
-7     32  -1
-9    33   0
-11   23    1
-13  23     -1
-15 12      1
-17 2       -2
-191        1
Integral Khovanov Homology

(db, data source)

  
[math]\displaystyle{ \dim{\mathcal G}_{2r+i}\operatorname{KH}^r_{\mathbb Z} }[/math] [math]\displaystyle{ i=-3 }[/math] [math]\displaystyle{ i=-1 }[/math]
[math]\displaystyle{ r=-8 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-7 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z} }[/math]
[math]\displaystyle{ r=-6 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-5 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=-4 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-3 }[/math] [math]\displaystyle{ {\mathbb Z}^{3}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2}\oplus{\mathbb Z}_2^{3} }[/math] [math]\displaystyle{ {\mathbb Z}^{3} }[/math]
[math]\displaystyle{ r=-1 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2^{2} }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]
[math]\displaystyle{ r=0 }[/math] [math]\displaystyle{ {\mathbb Z}\oplus{\mathbb Z}_2 }[/math] [math]\displaystyle{ {\mathbb Z}^{2} }[/math]

Computer Talk

Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.

Modifying This Page

Read me first: Modifying Knot Pages.

See/edit the Hoste-Thistlethwaite Knot Page master template (intermediate).

See/edit the Hoste-Thistlethwaite_Splice_Base (expert).

Back to the top.

K11n83.gif

K11n83

K11n85.gif

K11n85