L7a4
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L7a4 is [math]\displaystyle{ 7^2_3 }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L7a4's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X14,8,5,7 X12,10,13,9 X8,14,9,13 X2536 X4,12,1,11 |
| Gauss code | {1, -6, 2, -7}, {6, -1, 3, -5, 4, -2, 7, -4, 5, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ -\frac{2 (u-1) (v-1)}{\sqrt{u} \sqrt{v}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -2 q^{9/2}+2 q^{7/2}-3 q^{5/2}+3 q^{3/2}-\frac{1}{q^{3/2}}+q^{11/2}-3 \sqrt{q}+\frac{1}{\sqrt{q}} }[/math] (db) |
| Signature | 1 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -z^3 a^{-1} -z^3 a^{-3} +a z-z a^{-1} -z a^{-3} +z a^{-5} +a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ -z^6 a^{-2} -z^6 a^{-4} -z^5 a^{-1} -3 z^5 a^{-3} -2 z^5 a^{-5} +z^4 a^{-2} +z^4 a^{-4} -z^4 a^{-6} -z^4-a z^3-z^3 a^{-1} +5 z^3 a^{-3} +5 z^3 a^{-5} -2 z^2 a^{-2} +2 z^2 a^{-6} +2 a z+2 z a^{-1} -2 z a^{-3} -2 z a^{-5} +1-a z^{-1} - a^{-1} z^{-1} }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



