L7a3
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L7a3 is in the Rolfsen table of links. |
Link Presentations
[edit Notes on L7a3's Link Presentations]
| Planar diagram presentation | X6172 X10,4,11,3 X12,8,13,7 X14,10,5,9 X8,14,9,13 X2536 X4,12,1,11 |
| Gauss code | {1, -6, 2, -7}, {6, -1, 3, -5, 4, -2, 7, -3, 5, -4} |
| A Braid Representative | ||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle v} , Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle w} , ...) | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle -\frac{(t(1)-1) (t(2)-1) \left(t(2)^2+1\right)}{\sqrt{t(1)} t(2)^{3/2}}} (db) |
| Jones polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle 3 q^{9/2}-3 q^{7/2}+2 q^{5/2}-3 q^{3/2}+q^{13/2}-2 q^{11/2}+\sqrt{q}-\frac{1}{\sqrt{q}}} (db) |
| Signature | 3 (db) |
| HOMFLY-PT polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^3 a^{-5} +2 z a^{-5} + a^{-5} z^{-1} -z^5 a^{-3} -4 z^3 a^{-3} -5 z a^{-3} -3 a^{-3} z^{-1} +z^3 a^{-1} +3 z a^{-1} +2 a^{-1} z^{-1} } (db) |
| Kauffman polynomial | Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle z^2 a^{-8} +2 z^3 a^{-7} +3 z^4 a^{-6} -3 z^2 a^{-6} + a^{-6} +3 z^5 a^{-5} -6 z^3 a^{-5} +4 z a^{-5} - a^{-5} z^{-1} +z^6 a^{-4} +z^4 a^{-4} -6 z^2 a^{-4} +3 a^{-4} +4 z^5 a^{-3} -12 z^3 a^{-3} +9 z a^{-3} -3 a^{-3} z^{-1} +z^6 a^{-2} -2 z^4 a^{-2} -2 z^2 a^{-2} +3 a^{-2} +z^5 a^{-1} -4 z^3 a^{-1} +5 z a^{-1} -2 a^{-1} z^{-1} } (db) |
Khovanov Homology
| The coefficients of the monomials Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle t^rq^j} are shown, along with their alternating sums Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle \chi} (fixed Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle j} , alternation over Failed to parse (SVG (MathML can be enabled via browser plugin): Invalid response ("Math extension cannot connect to Restbase.") from server "https://wikimedia.org/api/rest_v1/":): {\displaystyle r} ). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



