L7a2
From Knot Atlas
Jump to navigationJump to search
|
|
|
![]() (Knotscape image) |
See the full Thistlethwaite Link Table (up to 11 crossings). |
|
L7a2 is [math]\displaystyle{ 7^2_5 }[/math] in the Rolfsen table of links. |
Link Presentations
[edit Notes on L7a2's Link Presentations]
| Planar diagram presentation | X6172 X10,3,11,4 X14,11,5,12 X12,7,13,8 X8,13,9,14 X2536 X4,9,1,10 |
| Gauss code | {1, -6, 2, -7}, {6, -1, 4, -5, 7, -2, 3, -4, 5, -3} |
| A Braid Representative | ||||||
| A Morse Link Presentation |
|
Polynomial invariants
| Multivariable Alexander Polynomial (in [math]\displaystyle{ u }[/math], [math]\displaystyle{ v }[/math], [math]\displaystyle{ w }[/math], ...) | [math]\displaystyle{ \frac{-2 u v^2+2 u v-u-v^3+2 v^2-2 v}{\sqrt{u} v^{3/2}} }[/math] (db) |
| Jones polynomial | [math]\displaystyle{ -\frac{1}{q^{3/2}}+\frac{2}{q^{5/2}}-\frac{4}{q^{7/2}}+\frac{3}{q^{9/2}}-\frac{4}{q^{11/2}}+\frac{3}{q^{13/2}}-\frac{2}{q^{15/2}}+\frac{1}{q^{17/2}} }[/math] (db) |
| Signature | -3 (db) |
| HOMFLY-PT polynomial | [math]\displaystyle{ -a^9 z^{-1} +3 a^7 z+3 a^7 z^{-1} -2 a^5 z^3-4 a^5 z-2 a^5 z^{-1} -a^3 z^3-a^3 z }[/math] (db) |
| Kauffman polynomial | [math]\displaystyle{ a^{10} z^4-2 a^{10} z^2+a^{10}+2 a^9 z^5-4 a^9 z^3+2 a^9 z-a^9 z^{-1} +a^8 z^6+2 a^8 z^4-7 a^8 z^2+3 a^8+5 a^7 z^5-10 a^7 z^3+8 a^7 z-3 a^7 z^{-1} +a^6 z^6+3 a^6 z^4-6 a^6 z^2+3 a^6+3 a^5 z^5-5 a^5 z^3+5 a^5 z-2 a^5 z^{-1} +2 a^4 z^4-a^4 z^2+a^3 z^3-a^3 z }[/math] (db) |
Khovanov Homology
| The coefficients of the monomials [math]\displaystyle{ t^rq^j }[/math] are shown, along with their alternating sums [math]\displaystyle{ \chi }[/math] (fixed [math]\displaystyle{ j }[/math], alternation over [math]\displaystyle{ r }[/math]). |
|
| Integral Khovanov Homology
(db, data source) |
|
Computer Talk
Much of the above data can be recomputed by Mathematica using the package KnotTheory`. See A Sample KnotTheory` Session.
Modifying This Page
| Read me first: Modifying Knot Pages
See/edit the Link Page master template (intermediate). See/edit the Link_Splice_Base (expert). Back to the top. |
|



